

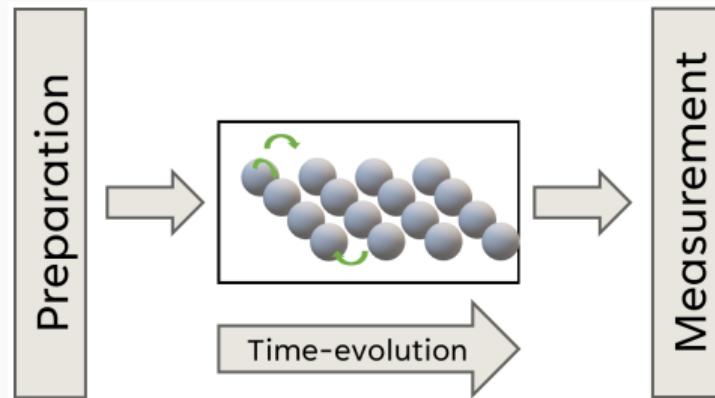
Efficient learning and simulation of quantum continuous variable systems

Andreas Bluhm— Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Joint work with Tim Möbus, Tuvia Gefen, Yu Tong, Albert H. Werner, Cambyse Rouzé

Grenoble, November 12, 2025

Introduction



Hamiltonian learning: The task of identifying the unknown Hamiltonian governing the evolution of a quantum system.

Learning bosonic systems

- Most work has focused on finite-dimensional quantum systems, e.g., collections of qubits.
- However, **bosonic systems** are not finite-dimensional and are described using **unbounded operators**, which is mathematically challenging.
- **Examples**: superconducting circuits, integrated photonic circuits, optomechanical platforms
- **Aim**: Efficient learning, i.e., evolution time scales as $\mathcal{O}(\varepsilon^{-1})$ (Heisenberg limit).
- Previous works are either restricted to Bose-Hubbard-like models [LTGNY24] or do not achieve Heisenberg scaling [MBCWR23].
- This work combines the best of both worlds.

Low-intersection bosonic Hamiltonians

Annihilation and creation operators: $b_i |k\rangle_i = \sqrt{k} |k-1\rangle_i$, $b_i^\dagger |k\rangle_i = \sqrt{k+1} |k+1\rangle_i$.

Definition

A **low-intersection bosonic Hamiltonian** acting on m modes is a Hamiltonian that takes the form $H = \sum_{a=1}^M E_a$, where each E_a is an ℓ -mode interaction of the form

$$E_a = \sum_{\mathbf{j}, \mathbf{j}' \in \mathbb{N}^\ell : \|\mathbf{j} + \mathbf{j}'\|_1 \leq d} h_{\mathbf{j}, \mathbf{j}'}^{(a)} (\mathbf{b}^\dagger)^\mathbf{j} \mathbf{b}^{\mathbf{j}'}.$$

We assume that at least one of $\mathbf{j} \neq 0$ or $\mathbf{j}' \neq 0$ holds and assume that $|h_{\mathbf{j}, \mathbf{j}'}^{(a)}| \leq 1$.

Moreover, $\ell = \mathcal{O}(1)$ and each E_a overlaps with at most $\mathfrak{d} = \mathcal{O}(1)$ other interactions E_b .

Our learning protocol generates estimates $\hat{h}_{\mathbf{j}, \mathbf{j}'}^{(a)}$ such that

$$\max_{\mathbf{j}, \mathbf{j}'} |\hat{h}_{\mathbf{j}, \mathbf{j}'}^{(a)} - h_{\mathbf{j}, \mathbf{j}'}^{(a)}| \leq \epsilon \text{ with probability at least } 1 - \delta.$$

Heisenberg-limited learning of low-intersection bosonic Hamiltonians

For our learning algorithm, we will make use of engineered dissipation as in [MBCWR23]. Recall: m modes, Hamiltonian of degree d

Theorem

There exists an algorithm which makes use of dissipation with strength $\gamma = \mathcal{O}(m^2 \varepsilon^{-1} \log^{2d+1/2}(1/\varepsilon))$ that can estimate all coefficients of H to precision ϵ with probability at least $1 - \delta$. It requires

$\mathcal{O}((1/\varepsilon) \log(m/\delta))$ total evolution time, and

$\mathcal{O}(\log^2(\log(1/\varepsilon)/\varepsilon) \log(m/\delta))$ experiments.

Core insight: By adding sufficiently strong engineered dissipation, we can restrict the time evolution to a subspace of our choosing, which allows us to extract the coefficients of H from the time evolution under an effective Hamiltonian.

Added dissipation

- The time evolution with added dissipation is defined by

$$\frac{d}{dt}\rho(t) = -i[H, \rho(t)] + \gamma\mathcal{L}(\rho(t)), \quad \rho(0) = \rho_0.$$

- The generator \mathcal{L} of the dissipation consists of single-mode terms \mathcal{L}_i . On each mode i , for $\alpha_i \in \mathbb{C}$ we consider a dissipation in the Lindbladian form $\mathcal{L}_i := \mathcal{L}[L_{1,\alpha_i}] + \mathcal{L}[L_{r_i,\alpha_i}]$, where $\mathcal{L}[L] = L \cdot L^\dagger - \frac{1}{2}\{L^\dagger L, \cdot\}$.
- The jump operators of the Lindblad operators $\mathcal{L}[L_{r,\alpha}]$ are

$$L_{r,\alpha} = b^r(b - \alpha).$$

Here, r_i has to be chosen sufficiently large as a function of d .

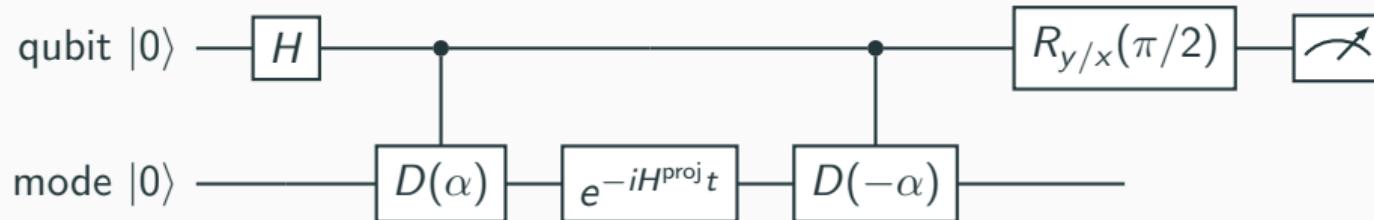
- The first part of the generator projects on the correct subspace, the second one controls the Hamiltonian.
- One can use Trotterization to alternate between Hamiltonian evolution and dissipation for short times.

Algorithm (1/2)

- Idea: The dissipative time evolution is approximately equal to the unitary time evolution on $\text{span}\{|0\rangle, |\alpha\rangle\}$ generated by an effective Hamiltonian which approximately has the form

$$H^{\text{proj}} \approx \begin{pmatrix} 0 & 0 \\ 0 & \langle \alpha | H | \alpha \rangle \end{pmatrix}.$$

- For different values of α and times $\{t_i\}_i$, we run the following circuit, where $D(\alpha)$ is the displacement operator:



- These experiments estimate well $\langle X \otimes I \rangle_{\rho_\alpha(t_i)}$ and $\langle Y \otimes I \rangle_{\rho_\alpha(t_i)}$.

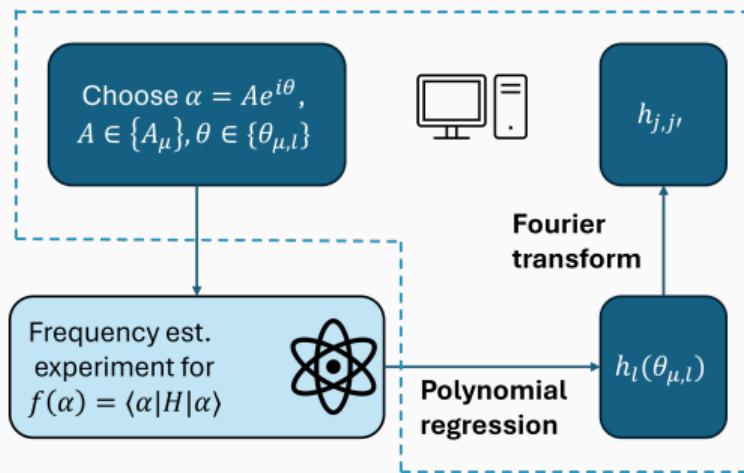
Algorithm (2/2)

- We can use a [phase estimation algorithm](#) to estimate $\langle \alpha | H | \alpha \rangle$ as

$$\langle X \otimes I \rangle_{\rho_\alpha(t_i)} \approx \cos(\langle \alpha | H | \alpha \rangle t_i),$$

$$\langle Y \otimes I \rangle_{\rho_\alpha(t_i)} \approx \sin(\langle \alpha | H | \alpha \rangle t_i).$$

- [Classical post-processing](#): Writing $\alpha = Ae^{i\theta}$, we find that $\langle \alpha | H | \alpha \rangle$ is a polynomial in A . Thus, we use Chebyshev interpolation to estimate its coefficients and extract the $\hat{h}_{j,j'}$ from them via a Fourier transform.



Adiabatic approximation for general Lindbladian evolutions

Our main technical contribution is the following theorem:

Theorem

Let H be a self-adjoint operator defined on a Hilbert space \mathcal{H} , and let \mathcal{L} be a Lindbladian over the state space on \mathcal{H} . Let P be the orthogonal projection onto the intersection of the finite-dimensional kernels of the jump operators defining \mathcal{L} . Then, under some reasonable technical conditions on H and \mathcal{L} , for any state $\rho = P\rho P$ and $\gamma > 0$,

$$\left\| e^{t(\gamma\mathcal{L}+\mathcal{H})}(\rho) - e^{t\mathcal{H}_{\text{proj}}}(\rho) \right\|_1 \leq \frac{tC}{\gamma} + \frac{C'}{\gamma},$$

where C and C' are constants. Here, $\mathcal{H} = -i[H, \cdot]$ and $\mathcal{H}_{\text{proj}}$ is an effective version of \mathcal{H} restricted to the image of P .

If the dissipation strength γ is large enough, the time evolution generated by H is restricted to the invariant subspace of the dissipative evolution generated by \mathcal{L} .

Application to cat codes (1/2)

- Bosonic cat codes rely on r -photon drive dissipation:

$$\frac{d}{dt}\rho(t) = \mathcal{L}[L_r](\rho(t)) \quad \text{with} \quad L_r := b^r - \alpha^r.$$

- For large times, the evolution drives any state exponentially fast to the finite-dimensional code space

$$\mathcal{C}_r(\alpha) := \text{span} \left\{ |\alpha_1\rangle\langle\alpha_2| : \alpha_1, \alpha_2 \in \left\{ \alpha e^{\frac{i2\pi j}{r}} : j \in \{0, \dots, r-1\} \right\} \right\}$$

as (see [ASR16])

$$\text{tr} \left[L_r e^{t\mathcal{L}[L_r]}(\rho) L_r^\dagger \right] \leq e^{-tr!} \text{tr} \left[L_r \rho L_r^\dagger \right].$$

Application to cat codes (2/2)

Using our adiabatic approximation theorem, we can prove convergence of the quantum dissipative evolution in the natural trace norm. Moreover:

Theorem

Let H a single-mode low-intersection bosonic Hamiltonian, $d/2 \leq r$, and let P be the orthogonal projection onto $\mathcal{C}_r(\alpha)$. Then, for all $t \geq 0$ and $\rho \in \mathcal{C}_r(\alpha)$,

$$\|e^{-it[H,\cdot]+t\gamma\mathcal{L}[b^r-\alpha^r]}(\rho) - e^{-it[P\cdot P, P\cdot P]}(\rho)\|_1 \leq \frac{tC}{\gamma} + \frac{C'}{\gamma}$$

for constants $C, C' \geq 0$.

- The r -photon driven dissipation of sufficient strength leads to an effective time evolution on the code space for any bounded-degree bosonic Hamiltonian.
- For $r = 2$, this specifically provides explicit convergence bounds for implementing rotations around the x-axis on the code space, experimentally realized [TGL+18].

Summary

- We have proved a new adiabatic approximation for dissipative evolutions
- Leads to a new Hamiltonian learning algorithm with Heisenberg scaling for low-intersection bounded degree systems
- Idea: Use dissipation to restrict evolution to a subspace on which we can learn
- Another application: Exponential convergence of photon driven dissipation to the cat code space

Some open questions:

- What is the optimal strength γ required to confine the effective evolutions within the finite-dimensional subspace? Can we get a scaling independent of m ?
- How can the required dissipation be realized in an experiment?

References

[ASR16]: R. Azouit, A. Sarlette, and P. Rouchon. Well-posedness and convergence of the Lindblad master equation for a quantum harm. oscillator with multi-photon drive and damping. *ESAIM: Control, Optimisation and Calculus of Variations*, 22(4), 2016.

[MBCWR23]: T. Möbus, AB, M. C. Caro, A. H. Werner, and C. Rouzé. Dissipation-enabled bosonic Hamiltonian learning via new information-propagation bounds. *arXiv preprint arXiv:2307.15026*, 2023.

[LTGNY24]: H. Li, Y. Tong, T. Gefen, H. Ni, and L. Ying. Heisenberg-limited Hamiltonian learn. for interacting bosons. *npj Quantum Information*, 10(1):83, 2024.

[TGL+18]: S. Touzard, A. Grimm, Z. Leghtas, *et al.* Coherent oscillations inside a quantum manifold stabilized by dissipation. *Physical Review X*, 8(2), 2018.

Our paper:

