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Hamiltonian learning: The task of identifying the unknown Hamiltonian governing the
evolution of a quantum system.




Learning bosonic systems

e Most work has focused on finite-dimensional quantum systems, e.g., collections of
qubits.

e However, bosonic systems are not finite-dimensional and are described using
unbounded operators, which is mathematically challenging.

e Examples: superconducting circuits, integrated photonic circuits, optomechanical

platforms
e Aim: Efficient learning, i.e., evolution time scales as O(¢~1) (Heisenberg limit).

e Previous works are either restricted to Bose-Hubbard-like models [LTGNY24] or do
not achieve Heisenberg scaling [MBCWR23].

e This work combines the best of both worlds.



Low-intersection bosonic Hamiltonians

Annihilation and creation operators: b; |k); = vk |k — 1)., b,T |k); =vk+1lk+1),.

Definition

A low-intersection bosonic Hamiltonian acting on m modes is a Hamiltonian that takes
the form H = Zyzl E,, where each E, is an £-mode interaction of the form
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We assume that at least one of j # 0 or j’ # 0 holds and assume that |hj(‘:,)| <1

Moreover, £ = O(1) and each E, overlaps with at most @ = O(1) other interactions Ej.

Our learning protocol generates estimates i\)j(}) such that

max |/A7j(?,) — hJ.(?,)\ < € with probability at least 1 — 4.
JaJ/ ). 2



Heisenberg-limited learning of low-intersection bosonic Hamiltonians

For our learning algorithm, we will make use of engineered dissipation as in
[MBCWR23]. Recall: m modes, Hamiltonian of degree d

Theorem

There exists an algorithm which makes use of dissipation with strength
v = O(mPe1og?9t1/2(1/¢)) that can estimate all coefficients of H to precision e
with probability at least 1 — §. It requires

O((1/€) log(m/d)) total evolution time, and
O(log?(log(1/€) /) log(m/d))  experiments.

Core insight: By adding sufficiently strong engineered dissipation, we can restrict the
time evolution to a subspace of our choosing, which allows us to extract the
coefficients of H from the time evolution under an effective Hamiltonian.



Added dissipation

e The time evolution with added dissipation is defined by

ot = ~ilH, O+ L), 0(0) = po.

e The generator L of the dissipation consists of single-mode terms £;. On each mode /,
for aj € C we consider a dissipation in the Lindbladian form L; := L[L1 ,] + L[Lr, o,],
where L[L] = L- LT —3{LTL,-} .

e The jump operators of the Lindblad operators L[L, ] are

Lyo=b'(b—0).

Here, r; has to be chosen sufficiently large as a function of d.

e The first part of the generator projects on the correct subspace, the second one
controls the Hamiltonian.

e One can use Trotterization to alternate between Hamiltonian evolution and

dissipation for short times. 6



Algorithm (1/2)

e |dea: The dissipative time evolution is approximately equal to the unitary time
evolution on span{|0), |a)} generated by an effective Hamiltonian which

Hproj ~ 0 0 .
0 (ol Hla)

e For different values of « and times {t;};, we run the following circuit, where D(«) is

approximately has the form

the displacement operator:
qubit 0) —{ H] Ry/x(7/2)

mode |0) —— D(a) | o—##it || D(~a)

e These experiments estimate well (X ® 1), () and (Y ® 1), (¢)-



Algorithm (2/2)

e We can use a phase estimation algorithm
to estimate (| H|a) as  remeemmeeseosseeeeeoeoooooooooooooooon

(X 1) po () = cos({a| H|a) i), Choose a = 4e'?, @E

Ae{4,}0€{6,}

(Y @ 1)ty ~ sin({a] H|a) t;).
Fourier
transform

e Classical post-processing: Writing

a = Aeia, we find that <Oé| H |(l> is a Frequency est. E
. iment f
polynomial in A. Thus, we use Chebyshev ;?5;1"22?,”3) | Polynomial
. . . . .. | regression
interpolation to estimate its coefficients T ,

and extract the i:)jd'l from them via a
Fourier transform.



Adiabatic approximation for general Lindbladian evolutions

Our main technical contribution is the following theorem:

Theorem

Let H be a self-adjoint operator defined on a Hilbert space ¢, and let L be a

Lindbladian over the state space on 7. Let P be the orthogonal projection onto the
intersection of the finite-dimensional kernels of the jump operators defining L. Then,
under some reasonable technical conditions on H and L, for any state p = PpP and

v > 0,
/
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where C and C' are constants. Here, "t = —i[H, ] and Hpyro is an effective version of

‘H restricted to the image of P.

If the dissipation strength ~ is large enough, the time evolution generated by H is
restricted to the invariant subspace of the dissipative evolution generated by L.



Application to cat codes (1/2)

e Bosonic cat codes rely on r-photon drive dissipation:

S = LILAp()  with L= b~

e For large times, the evolution drives any state exponentially fast to the
finite-dimensional code space

Cr(a) = span{|a1> (| T ag,ap € {ae@ je{0,...,r— 1}}}
as (see [ASR16])
tr{LretE[L'](p)Lﬂ < et tr[LrpLﬂ :
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Application to cat codes (2/2)

Using our adiabatic approximation theorem, we can prove convergence of the quantum
dissipative evolution in the natural trace norm. Moreover:

Theorem

Let H a single-mode low-intersection bosonic Hamiltonian, d/2 < r, and let P be the
orthogonal projection onto C.(«). Then, for all t > 0 and p € C,(«),

—it[H, @ —F . tC c’
He t[H, ] +tyL[b ](p) —e t[PHP,P P](p)H1 < 7 + 7

for constants C,C' > 0.

e The r-photon driven dissipation of sufficient strength leads to an effective time
evolution on the code space for any bounded-degree bosonic Hamiltonian.

e For r = 2, this specifically provides explicit convergence bounds for implementing
rotations around the x-axis on the code space, experimentally realized [TGL+18].



e We have proved a new adiabatic approximation for dissipative evolutions

e lLeads to a new Hamiltonian learning algorithm with Heisenberg scaling for
low-intersection bounded degree systems

e |dea: Use dissipation to restrict evolution to a subspace on which we can learn

e Another application: Exponential convergence of photon driven dissipation to the cat
code space

Some open questions:

e What is the optimal strength ~ required to confine the effective evolutions within the
finite-dimensional subspace? Can we get a scaling independent of m?

e How can the required dissipation be realized in an experiment?
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