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Introduction

Hamiltonian learning: The task of identifying the unknown Hamiltonian governing the

evolution of a quantum system.
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Learning bosonic systems

� Most work has focused on finite-dimensional quantum systems, e.g., collections of

qubits.

� However, bosonic systems are not finite-dimensional and are described using

unbounded operators, which is mathematically challenging.

� Examples: superconducting circuits, integrated photonic circuits, optomechanical

platforms

� Aim: Efficient learning, i.e., evolution time scales as O(ε−1) (Heisenberg limit).

� Previous works are either restricted to Bose-Hubbard-like models [LTGNY24] or do

not achieve Heisenberg scaling [MBCWR23].

� This work combines the best of both worlds.
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Low-intersection bosonic Hamiltonians

Annihilation and creation operators: bi |k⟩i =
√
k |k − 1⟩i , b

†
i |k⟩i =

√
k + 1 |k + 1⟩i .

Definition

A low-intersection bosonic Hamiltonian acting on m modes is a Hamiltonian that takes

the form H =
∑M

a=1 Ea, where each Ea is an k-mode interaction of the form

Ea =
∑

j,j′∈Nk : ∥j+j′∥1≤d

h
(a)
j,j′ (b

†)j bj
′
.

We assume that at least one of j ̸= 0 or j′ ̸= 0 holds and assume that |h(a)j,j′ | ≤ 1.

Moreover, k = O(1) and each Ea overlaps with at most d = O(1) other interactions Eb.

Our learning protocol generates estimates ĥ
(a)
j,j′ such that

max
j,j′

|ĥ(a)j,j′ − h
(a)
j,j′ | ≤ ϵ with probability at least 1− δ.
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Heisenberg-limited learning of low-intersection bosonic Hamiltonians

For our learning algorithm, we will make use of engineered dissipation as in

[MBCWR23]. Recall: m modes, Hamiltonian of degree d

Theorem

There exists an algorithm which makes use of dissipation with strength

γ = O(m2ε−1 log2d+1/2(1/ε)) that can estimate all coefficients of H to precision ϵ

with probability at least 1− δ. It requires

O((1/ε) log(m/δ)) total evolution time, and

O(log2(log(1/ε)/ε) log(m/δ)) experiments.

Core insight: By adding sufficiently strong engineered dissipation, we can restrict the

time evolution to a subspace of our choosing, which allows us to extract the

coefficients of H from the time evolution under an effective Hamiltonian.
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Added dissipation

� The time evolution with added dissipation is defined by

d

dt
ρ(t) = −i [H, ρ(t)] + γL(ρ(t)), ρ(0) = ρ0 .

� The generator L of the dissipation consists of single-mode terms Li . On each mode i ,

for αi ∈ C we consider a dissipation in the Lindbladian form Li := L[L1,αi ] +L[Lri ,αi ],

where L[L] = L · L† − 1
2{L

†L, ·} .

� The jump operators of the Lindblad operators L[Lr ,α] are

Lr ,α = br (b − α) .

Here, ri has to be chosen sufficiently large as a function of d .

� The first part of the generator projects on the correct subspace, the second one

controls the Hamiltonian.

� One can use Trotterization to alternate between Hamiltonian evolution and

dissipation for short times. 6



Algorithm (1/2)

� Idea: The dissipative time evolution is approximately equal to the unitary time

evolution on span{|0⟩ , |α⟩} generated by an effective Hamiltonian which

approximately has the form

Hproj ≈

(
0 0

0 ⟨α|H |α⟩

)
.

� For different values of α and times {ti}i , we run the following circuit, where D(α) is

the displacement operator:

qubit |0⟩ H Ry/x(π/2)

mode |0⟩ D(α) e−iHprojt D(−α)

� These experiments estimate well ⟨X ⊗ I ⟩ρα(ti ) and ⟨Y ⊗ I ⟩ρα(ti ). 7



Algorithm (2/2)

� We can use a phase estimation algorithm

to estimate ⟨α|H |α⟩ as

⟨X ⊗ I ⟩ρα(ti ) ≈ cos(⟨α|H |α⟩ ti ) ,
⟨Y ⊗ I ⟩ρα(ti ) ≈ sin(⟨α|H |α⟩ ti ) .

� Classical post-processing: Writing

α = Ae iθ, we find that ⟨α|H |α⟩ is a
polynomial in A. Thus, we use Chebyshev

interpolation to estimate its coefficients

and extract the ĥj ,j ′ from them via a

Fourier transform.
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Adiabatic approximation for general Lindbladian evolutions

Our main technical contribution is the following theorem:

Theorem

Let H be a self-adjoint operator defined on a Hilbert space H , and let L be a

Lindbladian over the state space on H . Let P be the orthogonal projection onto the

intersection of the finite-dimensional kernels of the jump operators defining L. Then,
under some reasonable technical conditions on H and L, for any state ρ = PρP and

γ > 0, ∥∥∥et(γL+H)(ρ)− etHproj(ρ)
∥∥∥
1
≤ tC

γ
+

C ′

γ
,

where C and C ′ are constants. Here, H = −i [H, ·] and Hproj is an effective version of

H restricted to the image of P.

If the dissipation strength γ is large enough, the time evolution generated by H is

restricted to the invariant subspace of the dissipative evolution generated by L. 9



Application to cat codes (1/2)

� Bosonic cat codes rely on r -photon drive dissipation:

d

dt
ρ(t) = L[Lr ](ρ(t)) with Lr := br − αr .

� For large times, the evolution drives any state exponentially fast to the

finite-dimensional code space

Cr (α) := span
{
|α1⟩ ⟨α2| : α1, α2 ∈

{
αe

i2πj
r : j ∈ {0, . . . , r − 1}

}}
as (see [ASR16])

tr
[
Lre

tL[Lr ](ρ)L†r

]
≤ e−tr ! tr

[
LrρL

†
r

]
.
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Application to cat codes (2/2)

Using our adiabatic approximation theorem, we can prove convergence of the quantum

dissipative evolution in the natural trace norm. Moreover:

Theorem

Let H a single-mode low-intersection bosonic Hamiltonian, d/2 ≤ r , and let P be the

orthogonal projection onto Cr (α). Then, for all t ≥ 0 and ρ ∈ Cr (α),

∥e−it[H,·]+tγL[br−αr ](ρ)− e−it[PHP,P·P](ρ)∥1 ≤
tC

γ
+

C ′

γ

for constants C ,C ′ ≥ 0.

� The r -photon driven dissipation of sufficient strength leads to an effective time

evolution on the code space for any bounded-degree bosonic Hamiltonian.

� For r = 2, this specifically provides explicit convergence bounds for implementing

rotations around the x-axis on the code space, experimentally realized [TGL+18].
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Summary

� We have proved a new adiabatic approximation for dissipative evolutions

� Leads to a new Hamiltonian learning algorithm with Heisenberg scaling for

low-intersection bounded degree systems

� Idea: Use dissipation to restrict evolution to a subspace on which we can learn

� Another application: Exponential convergence of photon driven dissipation to the cat

code space

Some open questions:

� What is the optimal strength γ required to confine the effective evolutions within the

finite-dimensional subspace? Can we get a scaling independent of m?

� How can the required dissipation be realized in an experiment?
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