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Motivation: Quantum
position-verification



Introduction
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a By Heather Chen and Kathleen Magramo, CNN

© 2 minute read - Published 2:31 AMEST, Sun February 4, 2024

e How can such scams be foiled?

e |dea: Verify the location of the alleged chief financial officer!

e Position-based cryptography: Use position as credential



Classical protocols
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f-route protocol
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f-measure protocol

e Protocol resembles
Vo Vi [BKll]
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Comparing the two protocols

e Both protocols use a classical Boolean function f and a single qubit

e For both protocols, it can be proven that attackers need to control Q(n) qubits to
attack successfully [BCS22]

e The proofs are very similar in both cases

e [ABMSVL24] proves upper bounds of O(2V"'°&") EPR pairs on f-route, but not on
f-measure (teleportation attack in [BK11] gives upper bound of O(2"))

e f-measure is still secure if quantum information travels slowly and thus fits current

technology better (qubits transmitted using fiber optics)

Are f-measure and f-route equally secure?




Tasks in non-local quantum
computation




Non-local quantum computation

. _ What we can implement:
What we would like to implement:
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N, VE VR WL WR are quantum channels and W is the resource state.



Coherent NLQC tasks

f-route and f-measure are incoherent in the sense that x and y must be classical.
What about coherent versions? Some examples:

CF-SWAP4ngs = > SWAPRS) © [x)x|, ® [y)ylg
Cf-PHASE ax 55 = Z(— 1) be)xl 4 ly)ylg

Cf-Zange = sz(x’y ® [xXx|a @ lyXylp -

In particular, if you can do Cf—SWAPAA/BB/, then you can do f-route.



Old and new reductions

—

Cf-SWAP —>—— C(f-PHASE Cf-PAULI
—_

f-route —>—— f-measure —>—— CDQS — PSQM R —— CFE

\—‘_/

CDS < PSM

CD(Q)S: Conditional disclosure of (quantum) secrets
PS(Q)M: Private simultaneous (quantum) message passing
CFE: Coherent function evaluation

Blue arrows are new, black ones are from [ABMSVL24].



Conditional disclosure of quantum secrets

R
e A and B receive n-bit strings x, vy,
respectively
0 e A has an additional classical bit s, the
secret
A B e A and B cannot communicate with each

. 1 other, only send messages to the referee

R should learn s if and only if f(x,y) =1

A and B share a resource state ¥ and send

quantum messages to a referee R. 10



f-measure to CDQS (1/2): Hiding information

e Consider a purified version of f-measure in which the verifiers do not produce
Hf(<Y) |b) for a random bit b, but prepare an EPR pair 1) or» keep half of it, and
measure it in the H7(¥)-basis in the end. Let W be the classical random variable
after measuring R

e The aim of the verifiers is to guess the outcome of this measurement
o Let p%’\}g the state after the attackers have send their messages. To answer
successfully, the state must fulfill H(W\A)p(w) <e
WAB
e Using an entropic uncertainty relation, with UE/).%,; arising from pgjg by measuring in

the (f @ 1)(x, y)-basis:
H(WIA) o) + HW[B) ) > 1
WAB WAB
e Thus, to successfully attack, in the first round the attackers must have already

destroyed the information necessary to win the protocol for f @ 1
11



f-measure to CDQS (2/2): Constructing an NLQC protocol

e Aim: We want to convert a strategy for f-measure into one for CDQS

e Prepare a uniformly random bit r and prepare |p) = H|r)
e Run the first round of f-measure and

1. have Alice send to the referee the system she would usually send to Bob
2. have Bob send to the referee the system he would usually keep
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Pictorial representation
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f-measure to CDQS (2/2): Constructing an NLQC protocol

e Aim: We want to convert a strategy for f-measure into one for CDQS

e Prepare a uniformly random bit r and prepare |p) = H|r)

e Run the first round of f-measure and
1. have Alice send to the referee the system she would usually send to Bob
2. have Bob send to the referee the system he would usually keep

e Alice sends s @ r as well

e The honest referee performs the actions Bob would perform in the second round for
f-measure

e If f(x,y) =1, the referee can recover r (and thus s) since we are playing a valid
strategy for f-measure

e If f(x,y) =0, the actions of Alice and Bob before sending to the referee have
destroyed the information needed to recover r and s stays hidden from the referee
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Why “a complexity theory for NLQC”?

What's the bigger plan?

e Entanglement cost in certain NLQC tasks can be upper bounded by complexity
measures = lower bounds on entanglement imply lower bounds on complexity,

notoriously hard

e Lower bounds on entanglement cost for f-route give lower bounds on memory size
and span program size to compute f. For functions in P, even super-linear lower
bounds are open

e Alternative question: When is one computation harder to do non-locally than another?

e Strategy like for complexity classes and reductions among computational problems

e Goal: Identify the hardest NLQCs, which are useful candidates for position-based
cryptography
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e f-measure and f-route are important protocols for QPV

We have shown that they are equally hard

First subexponential upper bounds for f-measure

More reductions between NLQC tasks, also coherent ones

Some open questions:

e Show impossibility of reductions, for example from incoherent to coherent tasks
e Are all incoherent tasks equally hard?

e Find more links to other areas of quantum information and (quantum) cryptography

16



References

[ABMSVL24]: R. Allerstorfer, H. Buhrman, A. May, F. Speelman, P. Verduyn Lunel.
Relating non-local quantum computation to information theoretic cryptography.
Quantum 8:1387, 2024.

[BCS22]: AB, M. Christandl, and F. Speelman. A single-qubit position verification
protocol that is secure against multi-qubit attacks. Nature Physics, 18(6):623-626,
2022.

[BK11]: S. Beigi and R. Kénig. Simplified instantaneous non-local quantum
computation with applications to position-based cryptography. New Journal of
Physics, 13(9):093036, 2011.

Our paper:

17




	Motivation: Quantum position-verification
	Tasks in non-local quantum computation

