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Motivation: Quantum

position-verification



Introduction

� How can such scams be foiled?

� Idea: Verify the location of the alleged chief financial officer!

� Position-based cryptography: Use position as credential
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Classical protocols

� Special relativity:

Information cannot

travel faster than the

speed of light

� Distance bounding:

Send questions, accept if

answers arrive fast

enough

� Collaborating attackers

can copy questions to

break any classical

protocol =⇒ need for

quantum protocols
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f -route protocol
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� Protocol goes back to

Kent et al. [KMS11]

� Verifiers prepare

entangled pair |Ω⟩
� Send one qubit Q of it

and keep the other

� At the end of the

protocol: Bell

measurement
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f -measure protocol
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� Protocol resembles

[BK11]

� Verifiers prepare Q

randomly as |0⟩ or |1⟩,
apply Hadamard gate if

f (x , y) = 1

� Prover measures in basis

specified by f (x , y),

sends back outcome b

� Verifiers check

consistency of b with the

Q they sent
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Comparing the two protocols

� Both protocols use a classical Boolean function f and a single qubit

� For both protocols, it can be proven that attackers need to control Ω(n) qubits to

attack successfully [BCS22]

� The proofs are very similar in both cases

� [ABMSVL24] proves upper bounds of O(2
√
n log n) EPR pairs on f -route, but not on

f -measure (teleportation attack in [BK11] gives upper bound of O(2n))

� f -measure is still secure if quantum information travels slowly and thus fits current

technology better (qubits transmitted using fiber optics)

Are f -measure and f -route equally secure?
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Tasks in non-local quantum

computation



Non-local quantum computation

What we would like to implement:

N

What we can implement:

VL VR

WRWL

Ψ

N , VL, VR , WL, WR are quantum channels and Ψ is the resource state.
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Coherent NLQC tasks

f -route and f -measure are incoherent in the sense that x and y must be classical.

What about coherent versions? Some examples:

Cf -SWAPAA′BB′ =
∑
x ,y

SWAP
f (x ,y)
A′B′ ⊗ |x⟩⟨x |A ⊗ |y⟩⟨y |B

Cf -PHASEAA′BB′ =
∑
x ,y

(−1)f (x ,y) |x⟩⟨x |A ⊗ |y⟩⟨y |B

Cf -ZAA′BB′ =
∑
x ,y

Z
f (x ,y)
A′ ⊗ |x⟩⟨x |A ⊗ |y⟩⟨y |B .

In particular, if you can do Cf -SWAPAA′BB′ , then you can do f -route.
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Old and new reductions

CDQS

CDS

PSQM CFE

PSM

Cf -PAULICf -SWAP

f -measuref -route

Cf -PHASE

CD(Q)S: Conditional disclosure of (quantum) secrets

PS(Q)M: Private simultaneous (quantum) message passing

CFE: Coherent function evaluation

Blue arrows are new, black ones are from [ABMSVL24].
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Conditional disclosure of quantum secrets

A and B share a resource state Ψ and send

quantum messages to a referee R.

� A and B receive n-bit strings x , y ,

respectively

� A has an additional classical bit s, the

secret

� A and B cannot communicate with each

other, only send messages to the referee

� R should learn s if and only if f (x , y) = 1
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f -measure to CDQS (1/2): Hiding information

� Consider a purified version of f -measure in which the verifiers do not produce

H f (x ,y) |b⟩ for a random bit b, but prepare an EPR pair |Ω⟩QR , keep half of it, and

measure it in the H f (x ,y)-basis in the end. Let W be the classical random variable

after measuring R

� The aim of the verifiers is to guess the outcome of this measurement

� Let ρ
(x ,y)
RAB the state after the attackers have send their messages. To answer

successfully, the state must fulfill H(W |A)
ρ
(x,y)
WAB

≤ ε

� Using an entropic uncertainty relation, with σ
(x ,y)
WAB arising from ρ

(x ,y)
RAB by measuring in

the (f ⊕ 1)(x , y)-basis:

H(W |A)
ρ
(x,y)
WAB

+ H(W |B)
σ
(x,y)
WAB

≥ 1

� Thus, to successfully attack, in the first round the attackers must have already

destroyed the information necessary to win the protocol for f ⊕ 1
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f -measure to CDQS (2/2): Constructing an NLQC protocol

� Aim: We want to convert a strategy for f -measure into one for CDQS

� Prepare a uniformly random bit r and prepare |φ⟩ = H |r⟩
� Run the first round of f -measure and

1. have Alice send to the referee the system she would usually send to Bob

2. have Bob send to the referee the system he would usually keep
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Pictorial representation

VL VR

WRWL

Ψ
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f -measure to CDQS (2/2): Constructing an NLQC protocol

� Aim: We want to convert a strategy for f -measure into one for CDQS

� Prepare a uniformly random bit r and prepare |φ⟩ = H |r⟩
� Run the first round of f -measure and

1. have Alice send to the referee the system she would usually send to Bob

2. have Bob send to the referee the system he would usually keep

� Alice sends s ⊕ r as well

� The honest referee performs the actions Bob would perform in the second round for

f -measure

� If f (x , y) = 1, the referee can recover r (and thus s) since we are playing a valid

strategy for f -measure

� If f (x , y) = 0, the actions of Alice and Bob before sending to the referee have

destroyed the information needed to recover r and s stays hidden from the referee
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Why “a complexity theory for NLQC”?

What’s the bigger plan?

� Entanglement cost in certain NLQC tasks can be upper bounded by complexity

measures =⇒ lower bounds on entanglement imply lower bounds on complexity,

notoriously hard

� Lower bounds on entanglement cost for f -route give lower bounds on memory size

and span program size to compute f . For functions in P, even super-linear lower

bounds are open

� Alternative question: When is one computation harder to do non-locally than another?

� Strategy like for complexity classes and reductions among computational problems

� Goal: Identify the hardest NLQCs, which are useful candidates for position-based

cryptography
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Summary

� f -measure and f -route are important protocols for QPV

� We have shown that they are equally hard

� First subexponential upper bounds for f -measure

� More reductions between NLQC tasks, also coherent ones

Some open questions:

� Show impossibility of reductions, for example from incoherent to coherent tasks

� Are all incoherent tasks equally hard?

� Find more links to other areas of quantum information and (quantum) cryptography
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