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Incompatibility in QM



Quantum states and measurements

e Motivation: Classical state ~ probability distributions: p € R?, p > 0, Ypi=1
e Quantum states ~~ density matrices: p € My4(C), p >0, Trp=1
e Measurement outcomes are labeled {1, ..., k}, need to be assigned probabilities
e Measurements: Tuples of matrices (Eq, ..., Ex) such that (Tr[Eip],..., Tr[Exp]) is a
probability distribution for all states p
o Tr[Eip) e R~ E; = E/
e Tr[Eip] >0~ E; >0
° ZITI’[E,/)] =1~ Zi E,' = /d
e Tuples of PSD matrices summing to identity are called positive operator-valued
measures (POVMs)

e We call 0 < E </ quantum effects



Quantum measurements: Compatibility

e Quantum measurements ~~ give the probabilities of the classical outcomes when a
quantum state enters a measurement apparatus. Mathematically, measurements are
modeled by POVMs

Two POVMs, A = (A1, ..., Ax) and B = (By, ..., B)), are called compatible if there
exists a third POVM C = (Cj)i¢[x1.jep Such that

I k
Vielkl, A=) and  Vjell, Bi=) G
j=1 i=1

The definition generalizes to g-tuples of POVMs A1), ... A&) having respectively
ki, ... kg outcomes, where the joint POVM C has outcome set [ki] x - -- X [kg].

e Other way to say that: jointly measurable



What does it mean?
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e Compatible measurements can be simulated by a single joint measurement, by

classically post-processing its outputs
e Examples:
1. Trivial POVMs A = (pilg) and B = (qjlq) are compatible
2. Commuting POVMs [A;, Bj] = 0 are compatible
3. If the POVM A is projective, then A and B are compatible iff they commute B



Noisy POVMs

e POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs
e Example: dichotomic POVMs and white noise, s € [0, 1]

(E,IE)r—>s(E,/E)+(1s)<£,é> or Er—>sE+(1—s)é

e Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ~
define CU = (E, =+ FJ)/4
e For most of the talk, we focus on dichotomic (YES/NO) POVMs

The incompatibility degree for g measurements on C9 is the number

v(g,d) := max{s € [0,1] : for all quantum effects Eq, ..., E; € My4(C),

the noisy versions sE; + (1 — s)/4/2 are compatible}



Free spectrahedra



Free spectrahedra

e A spectrahedron is given by PSD constraints: for
A= (A1,...,Ag) € (My(C)*)8

g
DA(]_) = {X c RE ZX,‘A,‘ < Id}

i=1

® Dioyov,02)(1) ={(x,y,2) € R3 : xox + yoy + zoz < h} = Bloch ball
e A free spectrahedron is the matricization of a spectrahedron

Dy = D Da(n) with  Da(n) := {X € (Mp(C)**)8 Zg:X,- ® A; < Ind}

n=1 =il



Example: the matrix diamond

T2
1
The matrix diamond is the free spectrahedron defined by Den(1)
o g 3
Dogi= | | {x & (MuC)F - S s <l Ve e {ﬂ}g} B
n=1 i=1
=il

e At level one, Dy, 4(1) is the unit ball of the /! norm on R&

e As a free spectrahedron, it is defined by 28 x 28 diagonal matrices Dy o = Dy, . |
withLi=h® - @ h®dag(l,-1)0h®---®h

g!



Spectrahedral inclusion

e Consider two free spectrahedra defined by (Ai,...,Ag) and (By, ..., By)

e We write D C Dg if, for all n > 1, Da(n) C Dg(n)

e Clearly, Dao C Dg = Da(1l) € Dp(1). For the converse implication to hold, one
may need to shrink Dy

For a free spectrahedron D4, we define its inclusion constant as
da(g, d) := max{s € [0,1] :for all g-tuples B, ..., By € M,(C)*,
DA(].) - DB(].) — S DA - DB}

e We shall be concerned with the inclusion constant for the matrix diamond, which we
denote by d(g, d)



Connecting the two




Compatibility in QM <= matrix diamond inclusion

To a g-tuple E € (M4(C)*)8, we associate:
o0 g
Do) = |_|{X S (Mn((C)Sa)g : ZX, & (2E, = Id) < Ind}
n=1 i=1
Theorem
Let E € (My4(C)**)8 be g-tuple of selfadjoint matrices. Then:

e The matrices E are quantum effects <= D¢, g(1) € Dap—(1)

e The matrices E are compatible quantum effects <= D¢, o € Dop_
At the intermediate levels 1 < n < d, D, g(n) € Dog—_(n) iff for all isometries
V :C" — CH9, the compressed effects VV*E;V are compatible.

Moreover, the incompatibility degree is equal to the inclusion constant of the matrix
diamond: Vg, d, v(g,d) = d(g,d).
10



Consequences

Many things are known about the matrix diamond:

e Forall g,d, 7(d) < é(g.d), 7(d) ~ /-2 asymptotically (AB and Nechita, 2022)

e Forall g,d, ﬁ < (g, d) (Passer et al., 2018)

Theorem (Passer et al., 2018)
For all g and d > 2[(e=1)/21 ~(g d) = d(g,d) =

=



Phase diagram
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e Connection to free spectrahedra also holds for arbitrary outcomes
e Instead of matrix diamond, consider its generalization, the matrix jewel

e The smallest unknown case is d = 2, g = 4 (4 qubit measurements)
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Computing the noise robustness of
incompatibility




4 qubit measurements: Reminder

e Connection between compatibility and free spectrahedra: The matrices E are

compatible quantum effects <= D¢, , C Do
e Bi=2F;—/forsome | > E; >0 «— —I<B; </
e XEDys = Y1 6Xi<h Vec{£1}*
e XEDy | — S, BeX <I

Goal: Maximize .
)\max (Z Bi ® XI)
i=1
over all allowed X, B as above.
Value: 1/6(4,2) =1/7v(4,2)
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4 qubit measurements: Optimization problem

4
maximize Amax <Z Bi® Xi)
i=1

subject to By < h, —B; <,
By <h, —By<h,
Bs<h, —B3<h,
By < b, —B4<bh,
4

EE,'X,' < b, Ve € {:l:l}4
i=1

Bi, Xi € My(C)*® Vie{l1,2,3,4}

Problem: Need to keep the dimension fixed, otherwise the result is 1/2 (1/,/g, g = 4) 14



Bloch sphere expansion

e Use Pauli matrices to write
B = b((Ji)/z + bgi)(fx + bg)(fy + bgi)(fz

Xi = X(gi)/g + X{i)O'X i Xz(i)Oy + X3(,i)o‘z.

e Can convert maximal eigenvalue into a trace using the fact that we can write any

state as
[¥) = (1® Xy)[2)

with |Q) being the maximally entangled state
e \We obtain a polynomial optimization problem in commuting variables

e Solve it with Lasserre-Parillo hierarchy

15



Commutative polynomial optimization problem

maximize ZZbJ(-i)Xj(i)
i

subject to 1 — (b{?)2 — (b{)2 — ()2 > 0,
(1 = b{y2 — (B — b2 — (b — D)2 — (b — b2 >0, vie [4]
(1+657)2 = (B + 7Y% — (7 + b§7)2 — () + b)) > 0, i e [4]
1>b0) > -1,  Vie{1,2,34}
(L=2e) 23 (P exn”)’ vee {1
i J i
1> Ze,-xéi), Ve € {£1}*
b <D er  vij 16

J J



Conjectured noise robustness of 4 qubit measurements

Known constraints:
* (g, d)>1/\/g = ~(4,2)>1/2
,2)

e v(g,d) > (g +1,d) and (3
= 7(4,2) <1/v/3~0.58

1/V3

Conjecture: v(4,2) = 2/4/13 ~ 0.55

e Theory of extreme points for free
spectrahedra: v(4,2) <2/v13

e Polynomial optimization: Almost
matching lower bounds (up to O(10™%))

Consistent with numerical results by Bavaresco et al., 2017 (not PO) L



More outcomes

e The connection between compatibility and free spectrahedra also holds for more
outcomes

e Need to substitute the matrix diamond by the matrix jewel

e Can for example consider one measurement with 2 and one measurement with k
outcomes

e Not much is known for this problem

e Can write down a polynomial optimization problem again to compute the noise
robustness
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Polynomial optimization problem for 2 + 3 outcomes

3
maximize  Amax <Z B; ® X,-)

subject to  Bi1 < Im, —Bi < Ip,

3 3
=B <ln, —-B3<Inm,
7B = 5 Bs

8 8
= = < I,
282+2Bg_l ,

X4 dx, - §x3 < I,

3
2 4
iX1—§X2+§X3§/m7
2 2
X1 — =Xo— = X3 < I,
1- 3% = 3% S,

B,’7 Xi € /\/lm((C)“ Vi e {1273}

If we don't fix the dimension m, we can solve this problem using the NPA hierarchy
19



Conjectured noise robustness of 2 + k outcomes measurements

5 and that 1/2 < ~((2,3),m) < 1/v2

For m > 2, we know that v((2,2), m) =

%\

Conjecture: v((2, k), m) = 3 (1 + ) forall m>2 k>?2

1
1+vk

Theory of extreme points for free spectrahedra: v((2, k), m) < (1 + 1+\f>
Corresponding measurements: {|0)X0], [1X1]} and {|-+)X+|,|—)X—],0,...,0}

For k € {2,3,4,5}: NPA hierarchy almost matching lower bounds up to high precision

20



Analytic results from extreme points of free spectrahedra

If we restrict to real matrices in the optimization problem and m = 2, we can

actually prove that v((2, k),2) = % (1 + 1+1\/F) for all k > 2

What keeps us from generalizing to all m?
e A linear map @ is n-positive iff ® ® id, is positive
o If®: S — My, (C), where S C M, (C) is an operator system, then ® is dg positive
iff ® is CP. However, if we only know dj4, similar implications no longer hold

Why only real matrices?

Connected to the extreme points of (Da, X Da,)(2), where Dy, is a free simplex

Real: If (X, Y) is matrix extreme, then X and Y are free extreme

This is good, because there are very few free extreme points

Complex: If X is Euclidean (not free) extreme and Y is free extreme with non-zero

imaginary part, then (X, Y') is matrix extreme 21



Open questions

e Can we simplify the optimization problems further using knowledge about extreme
points of free spectrahedra (in particular for 4 dichotomic qubit measurements)?

e |s there a way to extract exact certificates from the polynomial optimization?

e Can we solve the polynomial optimization problem more efficiently (allowing to tackle
larger problems)?

22
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