Computing Noise Robustness of Incompatible Quantum Measurements

Andreas Bluhm- Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Ongoing joint work with Eric Evert, Igor Klep, Ion Nechita, and Victor Magron

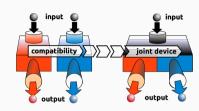
Talk outline

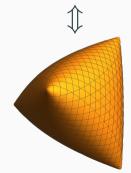
Incompatibility in QM

Free spectrahedra

Connecting the two

Computing the noise robustness of incompatibility





Incompatibility in QM

Quantum states and measurements

- Motivation: Classical state \leadsto probability distributions: $p \in \mathbb{R}^d$, $p \ge 0$, $\sum_i p_i = 1$
- Quantum states \rightsquigarrow density matrices: $\rho \in \mathcal{M}_d(\mathbb{C})$, $\rho \geq 0$, $\text{Tr } \rho = 1$
- Measurement outcomes are labeled $\{1,\ldots,k\}$, need to be assigned probabilities
- Measurements: Tuples of matrices (E_1, \ldots, E_k) such that $(\text{Tr}[E_1\rho], \ldots, \text{Tr}[E_k\rho])$ is a probability distribution for all states ρ
 - $\operatorname{Tr}[E_i \rho] \in \mathbb{R} \rightsquigarrow E_i = E_i^*$
 - $\operatorname{Tr}[E_i \rho] \geq 0 \rightsquigarrow E_i \geq 0$
 - $\sum_{i} \operatorname{Tr}[E_{i}\rho] = 1 \rightsquigarrow \sum_{i} E_{i} = I_{d}$
- Tuples of PSD matrices summing to identity are called positive operator-valued measures (POVMs)
- We call $0 \le E \le I$ quantum effects

Quantum measurements: Compatibility

Definition

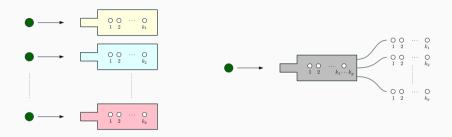
Two POVMs, $A = (A_1, ..., A_k)$ and $B = (B_1, ..., B_l)$, are called compatible if there exists a third POVM $C = (C_{ij})_{i \in [k], j \in [l]}$ such that

$$\forall i \in [k], \quad A_i = \sum_{j=1}^l C_{ij}$$
 and $\forall j \in [l], \quad B_j = \sum_{i=1}^k C_{ij}$

The definition generalizes to g-tuples of POVMs $A^{(1)}, \ldots, A^{(g)}$, having respectively k_1, \ldots, k_g outcomes, where the joint POVM C has outcome set $[k_1] \times \cdots \times [k_g]$.

• Other way to say that: jointly measurable

What does it mean?



- Compatible measurements can be simulated by a single joint measurement, by classically post-processing its outputs
- Examples:
 - 1. Trivial POVMs $A = (p_i I_d)$ and $B = (q_j I_d)$ are compatible
 - 2. Commuting POVMs $[A_i, B_j] = 0$ are compatible
 - 3. If the POVM A is projective, then A and B are compatible iff they commute

Noisy POVMs

- POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs
- ullet Example: dichotomic POVMs and white noise, $s \in [0,1]$

$$(E, I - E) \mapsto s(E, I - E) + (1 - s) \left(\frac{I}{2}, \frac{I}{2}\right)$$
 or $E \mapsto sE + (1 - s)\frac{I}{2}$

- Taking s=1/2 suffices to render any pair of dichotomic POVMs compatible define $C_{ij}:=(E_i+F_j)/4$
- For most of the talk, we focus on dichotomic (YES/NO) POVMs

Definition

The incompatibility degree for g measurements on \mathbb{C}^d is the number

$$\gamma(g,d):=\max\{s\in[0,1]: ext{ for all quantum effects } E_1,\ldots,E_g\in\mathcal{M}_d(\mathbb{C}),$$
 the noisy versions $sE_i+(1-s)I_d/2$ are compatible}

6

Free spectrahedra

Free spectrahedra

• A spectrahedron is given by PSD constraints: for

$$A=(A_1,\ldots,A_g)\in (\mathcal{M}_d(\mathbb{C})^{\mathrm{sa}})^g$$

$$\mathcal{D}_A(1) := \left\{ x \in \mathbb{R}^g : \sum_{i=1}^g x_i A_i \leq I_d \right\}$$

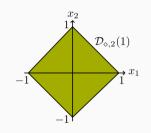
- $\mathcal{D}_{(\sigma_X,\sigma_Y,\sigma_Z)}(1) = \{(x,y,z) \in \mathbb{R}^3 : x\sigma_X + y\sigma_Y + z\sigma_Z \le I_2\} = \text{Bloch ball}$
- A free spectrahedron is the matricization of a spectrahedron

$$\mathcal{D}_A := \bigsqcup_{n=1}^{\infty} \mathcal{D}_A(n) \quad \text{ with } \quad \mathcal{D}_A(n) := \left\{ X \in (\mathcal{M}_n(\mathbb{C})^{\mathrm{sa}})^g : \sum_{i=1}^g X_i \otimes A_i \leq I_{nd} \right\}$$

Example: the matrix diamond

The matrix diamond is the free spectrahedron defined by

$$\mathcal{D}_{\diamondsuit,g} := \bigsqcup_{n=1}^{\infty} \left\{ X \in (\mathcal{M}_n(\mathbb{C})^{\mathrm{sa}})^g : \sum_{i=1}^g \epsilon_i X_i \leq I_n, \quad \forall \epsilon \in \{\pm 1\}^g
ight\}$$



- ullet At level one, $\mathcal{D}_{\diamondsuit,g}(1)$ is the unit ball of the ℓ^1 norm on \mathbb{R}^g
- As a free spectrahedron, it is defined by $2^g \times 2^g$ diagonal matrices $\mathcal{D}_{\diamondsuit,g} = \mathcal{D}_{L_1,\dots,L_g}$, with $L_i = I_2 \otimes \dots \otimes I_2 \otimes \text{diag}(1,-1) \otimes I_2 \otimes \dots \otimes I_2$

Spectrahedral inclusion

- Consider two free spectrahedra defined by (A_1, \ldots, A_g) and (B_1, \ldots, B_g)
- We write $\mathcal{D}_A \subseteq \mathcal{D}_B$ if, for all $n \geq 1$, $\mathcal{D}_A(n) \subseteq \mathcal{D}_B(n)$
- Clearly, $\mathcal{D}_A \subseteq \mathcal{D}_B \implies \mathcal{D}_A(1) \subseteq \mathcal{D}_B(1)$. For the converse implication to hold, one may need to shrink \mathcal{D}_A

Definition

For a free spectrahedron \mathcal{D}_A , we define its inclusion constant as

$$\delta_A(g,d) := \max\{s \in [0,1] : ext{for all } g ext{-tuples } B_1,\dots,B_g \in \mathcal{M}_d(\mathbb{C})^{\mathrm{sa}},$$
 $\mathcal{D}_A(1) \subseteq \mathcal{D}_B(1) \implies s \cdot \mathcal{D}_A \subseteq \mathcal{D}_B\}$

• We shall be concerned with the inclusion constant for the matrix diamond, which we denote by $\delta(g,d)$

Connecting the two

Compatibility in QM \iff matrix diamond inclusion

To a *g*-tuple $E \in (\mathcal{M}_d(\mathbb{C})^{\mathrm{sa}})^g$, we associate:

$$\mathcal{D}_{2E-I} := \bigsqcup_{n=1}^{\infty} \{X \in (\mathcal{M}_n(\mathbb{C})^{\operatorname{sa}})^g \ : \ \sum_{i=1}^g X_i \otimes (2E_i - I_d) \leq I_{nd} \}$$

Theorem

Let $E \in (\mathcal{M}_d(\mathbb{C})^{sa})^g$ be g-tuple of selfadjoint matrices. Then:

- The matrices E are quantum effects $\iff \mathcal{D}_{\diamondsuit,g}(1) \subseteq \mathcal{D}_{2E-I}(1)$
- ullet The matrices E are compatible quantum effects $\iff \mathcal{D}_{\diamondsuit,g} \subseteq \mathcal{D}_{2E-I}$

At the intermediate levels $1 \leq n \leq d$, $\mathcal{D}_{\diamondsuit,g}(n) \subseteq \mathcal{D}_{2E-I}(n)$ iff for all isometries $V : \mathbb{C}^n \to \mathbb{C}^d$, the compressed effects V^*E_iV are compatible.

Moreover, the incompatibility degree is equal to the inclusion constant of the matrix diamond: $\forall g, d, \gamma(g, d) = \delta(g, d)$.

Consequences

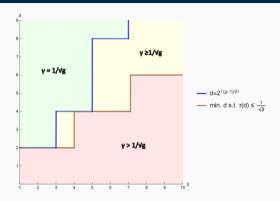
Many things are known about the matrix diamond:

- For all $g,d,\, au(d) \leq \delta(g,d),\, au(d) pprox \sqrt{rac{2}{\pi d}}$ asymptotically (AB and Nechita, 2022)
- For all $g, d, \frac{1}{\sqrt{g}} \leq \delta(g, d)$ (Passer *et al.*, 2018)

Theorem (Passer et al., 2018)

For all
$$g$$
 and $d \geq 2^{\lceil (g-1)/2 \rceil}$, $\gamma(g,d) = \delta(g,d) = \frac{1}{\sqrt{g}}$

Phase diagram



- Connection to free spectrahedra also holds for arbitrary outcomes
- Instead of matrix diamond, consider its generalization, the matrix jewel
- The smallest unknown case is d = 2, g = 4 (4 qubit measurements)

Computing the noise robustness of

incompatibility

4 qubit measurements: Reminder

- Connection between compatibility and free spectrahedra: The matrices E are compatible quantum effects $\iff \mathcal{D}_{\diamondsuit,g} \subseteq \mathcal{D}_{2E-1}$
- $B_i = 2E_i I$ for some $I \ge E_i \ge 0 \iff -I \le B_i \le I$
- $X \in \mathcal{D}_{\diamondsuit,4} \iff \sum_{i=1}^4 \epsilon_i X_i \leq I_2 \quad \forall \epsilon \in \{\pm 1\}^4$
- $X \in \mathcal{D}_{2E-I} \iff \sum_{i=1}^4 B_i \otimes X_i \leq I$

Goal: Maximize

$$\lambda_{\mathsf{max}}\left(\sum_{i=1}^4 B_i \otimes X_i\right)$$

over all allowed X, B as above.

Value:
$$1/\delta(4,2) = 1/\gamma(4,2)$$

4 qubit measurements: Optimization problem

$$\begin{array}{ll} \text{maximize} & \lambda_{\text{max}} \left(\sum_{i=1}^4 B_i \otimes X_i \right) \\ \text{subject to} & B_1 \leq I_2, \quad -B_1 \leq I_2, \\ & B_2 \leq I_2, \quad -B_2 \leq I_2, \\ & B_3 \leq I_2, \quad -B_3 \leq I_2, \\ & B_4 \leq I_2, \quad -B_4 \leq I_2, \\ & \sum_{i=1}^4 \epsilon_i X_i \leq I_2, \quad \forall \epsilon \in \{\pm 1\}^4 \\ & B_i, \ X_i \in \mathcal{M}_2(\mathbb{C})^{\text{sa}} \quad \forall i \in \{1, 2, 3, 4\} \end{aligned}$$

Problem: Need to keep the dimension fixed, otherwise the result is 1/2 $(1/\sqrt{g}, g=4)$

Bloch sphere expansion

Use Pauli matrices to write

$$B_{i} = b_{0}^{(i)} I_{2} + b_{1}^{(i)} \sigma_{X} + b_{2}^{(i)} \sigma_{Y} + b_{3}^{(i)} \sigma_{Z}$$

$$X_{i} = x_{0}^{(i)} I_{2} + x_{1}^{(i)} \sigma_{X} + x_{2}^{(i)} \sigma_{Y} + x_{3}^{(i)} \sigma_{Z}.$$

 Can convert maximal eigenvalue into a trace using the fact that we can write any state as

$$|\psi\rangle = (I \otimes X_{\psi}) |\Omega\rangle$$

with $|\Omega\rangle$ being the maximally entangled state

- We obtain a polynomial optimization problem in commuting variables
- Solve it with Lasserre-Parillo hierarchy

Commutative polynomial optimization problem

maximize
$$\sum_{i} \sum_{j} b_{j}^{(i)} x_{j}^{(i)}$$
subject to
$$1 - (b_{1}^{(0)})^{2} - (b_{2}^{(0)})^{2} - (b_{3}^{(0)})^{2} \ge 0,$$

$$(1 - b_{0}^{(i)})^{2} - (b_{1}^{(0)} - b_{1}^{(i)})^{2} - (b_{2}^{(0)} - b_{2}^{(i)})^{2} - (b_{3}^{(0)} - b_{3}^{(i)})^{2} \ge 0, \quad \forall i \in [4]$$

$$(1 + b_{0}^{(i)})^{2} - (b_{1}^{(0)} + b_{1}^{(i)})^{2} - (b_{2}^{(0)} + b_{2}^{(i)})^{2} - (b_{3}^{(0)} + b_{3}^{(i)})^{2} \ge 0, \quad \forall i \in [4]$$

$$1 \ge b_{0}^{(i)} \ge -1, \quad \forall i \in \{1, 2, 3, 4\}$$

$$(1 - \sum_{i} \epsilon_{i} x_{0}^{(i)})^{2} \ge \sum_{j} (\sum_{i} \epsilon_{i} x_{j}^{(i)})^{2}, \quad \forall \epsilon \in \{\pm 1\}^{4}$$

$$1 \ge \sum_{i} \epsilon_{i} x_{0}^{(i)}, \quad \forall \epsilon \in \{\pm 1\}^{4}$$

$$b_{j}^{(i)}, x_{j}^{(i)} \in \mathbb{R} \quad \forall i, j$$

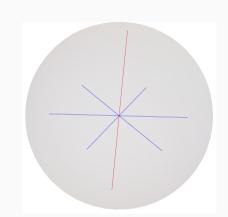
Conjectured noise robustness of 4 qubit measurements

Known constraints:

- $\gamma(g,d) \geq 1/\sqrt{g} \implies \gamma(4,2) \geq 1/2$
- $\gamma(g,d) \ge \gamma(g+1,d)$ and $\gamma(3,2) = 1/\sqrt{3}$ $\implies \gamma(4,2) \le 1/\sqrt{3} \approx 0.58$

Conjecture:
$$\gamma(4,2) = 2/\sqrt{13} \approx 0.55$$

- Theory of extreme points for free spectrahedra: $\gamma(4,2) \le 2/\sqrt{13}$
- ullet Polynomial optimization: Almost matching lower bounds (up to $\mathcal{O}(10^{-4})$)



More outcomes

- The connection between compatibility and free spectrahedra also holds for more outcomes
- Need to substitute the matrix diamond by the matrix jewel
- Can for example consider one measurement with 2 and one measurement with k
 outcomes
- Not much is known for this problem
- Can write down a polynomial optimization problem again to compute the noise robustness

Polynomial optimization problem for 2+3 outcomes

$$\begin{array}{ll} \text{maximize} & \lambda_{\max} \left(\sum_{i=1}^{3} B_{i} \otimes X_{i} \right) \\ \text{subject to} & B_{1} \leq I_{m}, \quad -B_{1} \leq I_{m}, \\ & -\frac{3}{2} B_{2} \leq I_{m}, \quad -\frac{3}{2} B_{3} \leq I_{m}, \\ & \frac{3}{2} B_{2} + \frac{3}{2} B_{3} \leq I_{m}, \\ & \pm X_{1} + \frac{4}{3} X_{2} - \frac{2}{3} X_{3} \leq I_{m}, \\ & \pm X_{1} - \frac{2}{3} X_{2} + \frac{4}{3} X_{3} \leq I_{m}, \\ & \pm X_{1} - \frac{2}{3} X_{2} - \frac{2}{3} X_{3} \leq I_{m}, \\ & B_{i}, \ X_{i} \in \mathcal{M}_{m}(\mathbb{C})^{\text{sa}} & \forall i \in \{1, 2, 3\} \end{aligned}$$

If we don't fix the dimension m, we can solve this problem using the NPA hierarchy

Conjectured noise robustness of 2 + k outcomes measurements

• For $m \geq 2$, we know that $\gamma((2,2),m) = \frac{1}{\sqrt{2}}$ and that $1/2 \leq \gamma((2,3),m) \leq 1/\sqrt{2}$

Conjecture:
$$\gamma((2,k),m) = \frac{1}{2} \left(1 + \frac{1}{1+\sqrt{k}}\right)$$
 for all $m \ge 2$, $k \ge 2$

- Theory of extreme points for free spectrahedra: $\gamma((2,k),m) \leq \frac{1}{2} \left(1 + \frac{1}{1+\sqrt{k}}\right)$
- $\bullet \ \ \text{Corresponding measurements:} \ \left\{ \left|0\right\rangle\!\!\left\langle 0\right|,\left|1\right\rangle\!\!\left\langle 1\right|\right\} \ \text{and} \ \left\{\left|+\right\rangle\!\!\left\langle +\right|,\left|-\right\rangle\!\!\left\langle -\right|,0,\ldots,0\right\} \\$
- For $k \in \{2, 3, 4, 5\}$: NPA hierarchy almost matching lower bounds up to high precision

Analytic results from extreme points of free spectrahedra

If we restrict to real matrices in the optimization problem and m=2, we can actually prove that $\gamma((2,k),2)=\frac{1}{2}\left(1+\frac{1}{1+\sqrt{k}}\right)$ for all $k\geq 2$

What keeps us from generalizing to all m?

- A linear map Φ is *n*-positive iff $\Phi \otimes id_n$ is positive
- If $\Phi: S \to \mathcal{M}_{d_B}(\mathbb{C})$, where $S \subseteq \mathcal{M}_{d_A}(\mathbb{C})$ is an operator system, then Φ is d_B positive iff Φ is CP. However, if we only know d_A , similar implications no longer hold

Why only real matrices?

- Connected to the extreme points of $(\mathcal{D}_{\Delta_k} \times \mathcal{D}_{\Delta_2})(2)$, where \mathcal{D}_{Δ_k} is a free simplex
- Real: If (X, Y) is matrix extreme, then X and Y are free extreme
- This is good, because there are very few free extreme points
- Complex: If X is Euclidean (not free) extreme and Y is free extreme with non-zero imaginary part, then (X, Y) is matrix extreme

Open questions

- Can we simplify the optimization problems further using knowledge about extreme points of free spectrahedra (in particular for 4 dichotomic qubit measurements)?
- Is there a way to extract exact certificates from the polynomial optimization?
- Can we solve the polynomial optimization problem more efficiently (allowing to tackle larger problems)?

References

Inclusion constants:

- [1] J. W. Helton, I. Klep, S. A. McCullough, M. Schweighofer: *Dilations, linear matrix inequalities, the matrix cube problem and beta distributions.* Mem. Am. Math. Soc., 257(1232), 2019
- [2] B. Passer, O. Shalit, B. Solel: *Minimal and maximal matrix convex sets*. J. Funct. Anal., 274(11), 2018
- [3] AB and I. Nechita: Maximal violation of steering inequalities and the matrix cube. Quantum, 6, 2022

Compatibility and free spectrahedra:

- [4] AB and I. Nechita: Joint measurability of quantum effects and the matrix diamond. J. Math. Phys., 58, 2018
- [5] AB and I. Nechita: Compatibility of quantum measurements and inclusion constants for the matrix jewel. SIAGA, 4(3), 2020

Most incompatible measurements:

[6] J. Bavaresco, M. T. Quintino, L. Guerini, T. O. Maciel, D. Cavalcanti, and M. Terra Cunha: *Most incompatible measurements for robust steering tests*. Phys. Rev. A, 96(2), 2017