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Incompatibility in QM



Quantum states and measurements

� Motivation: Classical state ⇝ probability distributions: p ∈ Rd , p ≥ 0,
∑

i pi = 1

� Quantum states ⇝ density matrices: ρ ∈ Md(C), ρ ≥ 0, Tr ρ = 1

� Measurement outcomes are labeled {1, . . . , k}, need to be assigned probabilities

� Measurements: Tuples of matrices (E1, . . . ,Ek) such that (Tr[E1ρ], . . . ,Tr[Ekρ]) is a
probability distribution for all states ρ

� Tr[Eiρ] ∈ R ⇝ Ei = E∗
i

� Tr[Eiρ] ≥ 0 ⇝ Ei ≥ 0

�

∑
i Tr[Eiρ] = 1 ⇝

∑
i Ei = Id

� Tuples of PSD matrices summing to identity are called positive operator-valued

measures (POVMs)

� We call 0 ≤ E ≤ I quantum effects
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Quantum measurements: Compatibility

� Quantum measurements ⇝ give the probabilities of the classical outcomes when a

quantum state enters a measurement apparatus. Mathematically, measurements are

modeled by POVMs

Definition

Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl), are called compatible if there

exists a third POVM C = (Cij)i∈[k],j∈[l ] such that

∀i ∈ [k], Ai =
l∑

j=1

Cij and ∀j ∈ [l ], Bj =
k∑

i=1

Cij

The definition generalizes to g -tuples of POVMs A(1), . . . ,A(g), having respectively

k1, . . . kg outcomes, where the joint POVM C has outcome set [k1]× · · · × [kg ].

� Other way to say that: jointly measurable
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What does it mean?

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1 · · · kg
· · ·

� Compatible measurements can be simulated by a single joint measurement, by

classically post-processing its outputs
� Examples:

1. Trivial POVMs A = (pi Id) and B = (qj Id) are compatible

2. Commuting POVMs [Ai ,Bj ] = 0 are compatible

3. If the POVM A is projective, then A and B are compatible iff they commute
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Noisy POVMs

� POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs

� Example: dichotomic POVMs and white noise, s ∈ [0, 1]

(E , I − E ) 7→ s(E , I − E ) + (1− s)

(
I

2
,
I

2

)
or E 7→ sE + (1− s)

I

2
� Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ⇝

define Cij := (Ei + Fj)/4

� For most of the talk, we focus on dichotomic (YES/NO) POVMs

Definition

The incompatibility degree for g measurements on Cd is the number

γ(g , d) := max{s ∈ [0, 1] : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions sEi + (1− s)Id/2 are compatible}
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Free spectrahedra



Free spectrahedra

� A spectrahedron is given by PSD constraints: for

A = (A1, . . . ,Ag ) ∈ (Md(C)sa)g

DA(1) :=

{
x ∈ Rg :

g∑
i=1

xiAi ≤ Id

}

� D(σX ,σY ,σZ )(1) = {(x , y , z) ∈ R3 : xσX + yσY + zσZ ≤ I2} = Bloch ball

� A free spectrahedron is the matricization of a spectrahedron

DA :=
∞⊔
n=1

DA(n) with DA(n) :=

{
X ∈ (Mn(C)sa)g :

g∑
i=1

Xi ⊗ Ai ≤ Ind

}
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Example: the matrix diamond

The matrix diamond is the free spectrahedron defined by

D♢,g :=
∞⊔
n=1

{
X ∈ (Mn(C)sa)g :

g∑
i=1

ϵiXi ≤ In, ∀ϵ ∈ {±1}g
}

� At level one, D♢,g (1) is the unit ball of the ℓ1 norm on Rg

� As a free spectrahedron, it is defined by 2g × 2g diagonal matrices D♢,g = DL1,...,Lg ,

with Li = I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2
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Spectrahedral inclusion

� Consider two free spectrahedra defined by (A1, . . . ,Ag ) and (B1, . . . ,Bg )

� We write DA ⊆ DB if, for all n ≥ 1, DA(n) ⊆ DB(n)

� Clearly, DA ⊆ DB =⇒ DA(1) ⊆ DB(1). For the converse implication to hold, one

may need to shrink DA

Definition

For a free spectrahedron DA, we define its inclusion constant as

δA(g , d) := max{s ∈ [0, 1] : for all g -tuples B1, . . . ,Bg ∈ Md(C)sa,

DA(1) ⊆ DB(1) =⇒ s · DA ⊆ DB}

� We shall be concerned with the inclusion constant for the matrix diamond, which we

denote by δ(g , d)
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Connecting the two



Compatibility in QM ⇐⇒ matrix diamond inclusion

To a g -tuple E ∈ (Md(C)sa)g , we associate:

D2E−I :=
∞⊔
n=1

{X ∈ (Mn(C)sa)g :

g∑
i=1

Xi ⊗ (2Ei − Id) ≤ Ind}

Theorem

Let E ∈ (Md(C)sa)g be g-tuple of selfadjoint matrices. Then:

� The matrices E are quantum effects ⇐⇒ D♢,g (1) ⊆ D2E−I (1)

� The matrices E are compatible quantum effects ⇐⇒ D♢,g ⊆ D2E−I

At the intermediate levels 1 ≤ n ≤ d, D♢,g (n) ⊆ D2E−I (n) iff for all isometries

V : Cn → Cd , the compressed effects V ∗EiV are compatible.

Moreover, the incompatibility degree is equal to the inclusion constant of the matrix

diamond: ∀g , d, γ(g , d) = δ(g , d).
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Consequences

Many things are known about the matrix diamond:

� For all g , d , τ(d) ≤ δ(g , d), τ(d) ≈
√

2
πd asymptotically (AB and Nechita, 2022)

� For all g , d , 1√
g ≤ δ(g , d) (Passer et al., 2018)

Theorem (Passer et al., 2018)

For all g and d ≥ 2⌈(g−1)/2⌉, γ(g , d) = δ(g , d) = 1√
g
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Phase diagram

� Connection to free spectrahedra also holds for arbitrary outcomes

� Instead of matrix diamond, consider its generalization, the matrix jewel

� The smallest unknown case is d = 2, g = 4 (4 qubit measurements)
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Computing the noise robustness of

incompatibility



4 qubit measurements: Reminder

� Connection between compatibility and free spectrahedra: The matrices E are

compatible quantum effects ⇐⇒ D♢,g ⊆ D2E−I

� Bi = 2Ei − I for some I ≥ Ei ≥ 0 ⇐⇒ −I ≤ Bi ≤ I

� X ∈ D♢,4 ⇐⇒
∑4

i=1 ϵiXi ≤ I2 ∀ϵ ∈ {±1}4

� X ∈ D2E−I ⇐⇒
∑4

i=1 Bi ⊗ Xi ≤ I

Goal: Maximize

λmax

(
4∑

i=1

Bi ⊗ Xi

)
over all allowed X , B as above.

Value: 1/δ(4, 2) = 1/γ(4, 2)
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4 qubit measurements: Optimization problem

maximize λmax

(
4∑

i=1

Bi ⊗ Xi

)
subject to B1 ≤ I2, −B1 ≤ I2,

B2 ≤ I2, −B2 ≤ I2,

B3 ≤ I2, −B3 ≤ I2,

B4 ≤ I2, −B4 ≤ I2,

4∑
i=1

ϵiXi ≤ I2, ∀ϵ ∈ {±1}4

Bi , Xi ∈ M2(C)sa ∀i ∈ {1, 2, 3, 4}

Problem: Need to keep the dimension fixed, otherwise the result is 1/2 (1/
√
g , g = 4)
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Bloch sphere expansion

� Use Pauli matrices to write

Bi = b
(i)
0 I2 + b

(i)
1 σX + b

(i)
2 σY + b

(i)
3 σZ

Xi = x
(i)
0 I2 + x

(i)
1 σX + x

(i)
2 σY + x

(i)
3 σZ .

� Can convert maximal eigenvalue into a trace using the fact that we can write any

state as

|ψ⟩ = (I ⊗ Xψ) |Ω⟩

with |Ω⟩ being the maximally entangled state

� We obtain a polynomial optimization problem in commuting variables

� Solve it with Lasserre-Parillo hierarchy
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Commutative polynomial optimization problem

maximize
∑
i

∑
j

b
(i)
j x

(i)
j

subject to 1− (b
(0)
1 )2 − (b

(0)
2 )2 − (b

(0)
3 )2 ≥ 0,

(1− b
(i)
0 )2 − (b

(0)
1 − b

(i)
1 )2 − (b

(0)
2 − b

(i)
2 )2 − (b

(0)
3 − b

(i)
3 )2 ≥ 0, ∀i ∈ [4]

(1 + b
(i)
0 )2 − (b

(0)
1 + b

(i)
1 )2 − (b

(0)
2 + b

(i)
2 )2 − (b

(0)
3 + b

(i)
3 )2 ≥ 0, ∀i ∈ [4]

1 ≥ b
(i)
0 ≥ −1, ∀i ∈ {1, 2, 3, 4}(

1−
∑
i

ϵix
(i)
0

)2 ≥∑
j

(∑
i

ϵix
(i)
j

)2
, ∀ϵ ∈ {±1}4

1 ≥
∑
i

ϵix
(i)
0 , ∀ϵ ∈ {±1}4

b
(i)
j , x

(i)
j ∈ R ∀i , j 16



Conjectured noise robustness of 4 qubit measurements

Known constraints:

� γ(g , d) ≥ 1/
√
g =⇒ γ(4, 2) ≥ 1/2

� γ(g , d) ≥ γ(g + 1, d) and γ(3, 2) = 1/
√
3

=⇒ γ(4, 2) ≤ 1/
√
3 ≈ 0.58

Conjecture: γ(4, 2) = 2/
√
13 ≈ 0.55

� Theory of extreme points for free

spectrahedra: γ(4, 2) ≤ 2/
√
13

� Polynomial optimization: Almost

matching lower bounds (up to O(10−4))

Consistent with numerical results by Bavaresco et al., 2017 (not PO) 17



More outcomes

� The connection between compatibility and free spectrahedra also holds for more

outcomes

� Need to substitute the matrix diamond by the matrix jewel

� Can for example consider one measurement with 2 and one measurement with k

outcomes

� Not much is known for this problem

� Can write down a polynomial optimization problem again to compute the noise

robustness
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Polynomial optimization problem for 2 + 3 outcomes

maximize λmax

(
3∑

i=1

Bi ⊗ Xi

)
subject to B1 ≤ Im, −B1 ≤ Im,

− 3

2
B2 ≤ Im, −3

2
B3 ≤ Im,

3

2
B2 +

3

2
B3 ≤ Im,

± X1 +
4

3
X2 −

2

3
X3 ≤ Im,

± X1 −
2

3
X2 +

4

3
X3 ≤ Im,

± X1 −
2

3
X2 −

2

3
X3 ≤ Im,

Bi , Xi ∈ Mm(C)sa ∀i ∈ {1, 2, 3}

If we don’t fix the dimension m, we can solve this problem using the NPA hierarchy
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Conjectured noise robustness of 2 + k outcomes measurements

� For m ≥ 2, we know that γ((2, 2),m) = 1√
2
and that 1/2 ≤ γ((2, 3),m) ≤ 1/

√
2

Conjecture: γ((2, k),m) = 1
2

(
1 + 1

1+
√
k

)
for all m ≥ 2, k ≥ 2

� Theory of extreme points for free spectrahedra: γ((2, k),m) ≤ 1
2

(
1 + 1

1+
√
k

)
� Corresponding measurements: {|0⟩⟨0| , |1⟩⟨1|} and {|+⟩⟨+| , |−⟩⟨−| , 0, . . . , 0}
� For k ∈ {2, 3, 4, 5}: NPA hierarchy almost matching lower bounds up to high precision
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Analytic results from extreme points of free spectrahedra

If we restrict to real matrices in the optimization problem and m = 2, we can

actually prove that γ((2, k), 2) = 1
2

(
1 + 1

1+
√
k

)
for all k ≥ 2

What keeps us from generalizing to all m?

� A linear map Φ is n-positive iff Φ⊗ idn is positive

� If Φ : S → MdB (C), where S ⊆ MdA(C) is an operator system, then Φ is dB positive

iff Φ is CP. However, if we only know dA, similar implications no longer hold

Why only real matrices?

� Connected to the extreme points of (D∆k
×D∆2)(2), where D∆k

is a free simplex

� Real: If (X ,Y ) is matrix extreme, then X and Y are free extreme

� This is good, because there are very few free extreme points

� Complex: If X is Euclidean (not free) extreme and Y is free extreme with non-zero

imaginary part, then (X ,Y ) is matrix extreme 21



Open questions

� Can we simplify the optimization problems further using knowledge about extreme

points of free spectrahedra (in particular for 4 dichotomic qubit measurements)?

� Is there a way to extract exact certificates from the polynomial optimization?

� Can we solve the polynomial optimization problem more efficiently (allowing to tackle

larger problems)?
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