Strong decay of correlations for Gibbs states in any dimension

Andreas Bluhm- Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

joint work this Ángela Capel and Antonio Pérez-Hernández

Tübingen, December 18, 2024

First question: How difficult is it to describe quantum many-body systems in thermal equilibrium?

- For local Hamiltonians and high enough temperatures, the answer should be: not too difficult
- It is known that such systems can efficiently be simulated classically using, e.g., tensor networks
- Reason: Fast decay of correlations
- There are many different ways to measure correlations

Second question: Which correlation measures are equivalent?

Preliminaries

Formalism: Quantum spin systems

- Graph: \mathbb{Z}^g with a distance dist
- At each vertex x Hilbert space $\mathcal{H}_{x} \simeq \mathbb{C}^{d}$
- On finite subset X: $\mathcal{H}_X = \bigotimes_{x \in X} \mathcal{H}_x \simeq (\mathbb{C}^d)^{\otimes |X|}$
- Observables: $\mathfrak{A}_X = \mathcal{B}(\mathcal{H}_X) \simeq \mathcal{M}_d(\mathbb{C})^{\otimes |X|}$
- Identify for $X \subset \Lambda$: $\mathfrak{A}_X \hookrightarrow \mathfrak{A}_\Lambda$, $Q \mapsto Q \otimes \mathbb{1}_{\Lambda \setminus X}$

Formalism: Gibbs states of local Hamiltonians

- Interactions Φ : For each finite X, $\Phi_X \in \mathfrak{A}_X$ and $\Phi_X^* = \Phi_X$
- Finite range: $\Phi_X = 0$ if diam(X) > r, $\|\Phi_X\|_{\infty} \leq J$ for all finite X
- Short range or exponentially decaying: $\|\Phi\|_{\lambda,\mu} \leq \infty$, where

$$\|\Phi\|_{\lambda,\mu} = \sup_{x\in\mathbb{Z}^g}\sum_{X
i x} \|\Phi_X\|_\infty e^{\lambda|X|+\mu\operatorname{diam}(X)}$$

- Hamiltonian on finite subset A: $H_{\Lambda} = \sum_{X \subset \Lambda} \Phi_X$
- Gibbs state on A at inverse temperature β :

$$ho_{eta}^{\Lambda} = rac{e^{-eta H_{\Lambda}}}{\operatorname{Tr}_{\Lambda}[e^{-eta H_{\Lambda}}]}$$

- Marginals of the Gibbs state: $\rho^{\rm A}_{\beta,X}={\rm tr}_{{\rm A}\backslash X}[\rho^{\rm A}_\beta]$

Covariance

First measure of correlations: operator of covariance correlation

$$\mathsf{Cov}_{\rho}(A, C) = \sup_{O_A, O_C} |\mathsf{Tr}[O_A \otimes O_C(\rho_{AC} - \rho_A \otimes \rho_C)]| ,$$

where supremum runs over $\mathcal{O}_{\mathcal{A}} \in \mathfrak{A}_{\mathcal{A}}, \ \mathcal{O}_{\mathcal{C}} \in \mathfrak{A}_{\mathcal{C}}$ with norm at most 1

Definition (Exponential uniform decay of covariance)

A system exhibits exponential uniform decay of covariance at inverse temperature β if there exist universal constants $K, \alpha \geq 0$ such that for all finite $\Lambda \subset \mathbb{Z}^g$, $\rho := \rho_{\beta}^{\Lambda}$ the Gibbs state for the Hamiltonian on the region Λ , and $A, C \subset \Lambda$ with $A \cap C \neq \emptyset$,

$$\operatorname{Cov}_{
ho}(A,C) \leq K f(A,C) e^{-lpha \operatorname{dist}(A,C)}$$

Here, f(A, C) is a function of A and C, for example f(A, C) = 1, $f(A, C) = |\partial A| |\partial C|$, or f(A, C) = |A| |C|.

Mutual information

Second measure of correlations: mutual information $I_{\rho}(A:C) = D(\rho_{AC} \| \rho_A \otimes \rho_C)$, with

$$D(\rho \| \sigma) = \begin{cases} \operatorname{Tr}[\rho \log \rho - \rho \log \sigma] & \operatorname{supp}(\rho) \subset \operatorname{supp}(\sigma) \\ \infty & \text{else} \end{cases}$$

Definition (Exponential uniform decay of mutual information)

A system exhibits exponential uniform decay of mutual information at inverse temperature β if there exist universal constants $K, \alpha \ge 0$ such that for all finite $\Lambda \subset \mathbb{Z}^{g}$, $\rho := \rho_{\beta}^{\Lambda}$ the Gibbs state for the Hamiltonian on the region Λ , and $A, C \subset \Lambda$ with $A \cap C \neq \emptyset$,

$$I_{
ho}(A:C) \leq K f(A,C) e^{-\alpha \operatorname{dist}(A,C)}$$

 $I_{\rho}(A:C) \geq \frac{1}{2} \operatorname{Corr}_{\rho}(A:C)^2$ due to Pinsker's inequality and the inequality can be strict (data hiding)

Mixing condition

Third measure of correlations: mixing condition. Considers the quantity $\|\rho_{AC} \rho_A^{-1} \otimes \rho_C^{-1} - \mathbb{1}_{AC}\|_{\infty} \ge I_{\rho}(A:C)$

Definition (Uniform mixing condition)

A uniform mixing condition holds at inverse temperature β if there exist universal constants $K, \alpha \geq 0$ such that for all finite $\Lambda \subset \mathbb{Z}^g$, $\rho := \rho_{\beta}^{\Lambda}$ the Gibbs state for the Hamiltonian on the region Λ , and $A, C \subset \Lambda$ with $A \cap C \neq \emptyset$,

$$\|\rho_{AC} \rho_A^{-1} \otimes \rho_C^{-1} - \mathbb{1}_{AC}\|_{\infty} \leq K f(A, C) e^{-\alpha \operatorname{dist}(A, C)}$$

The name comes from the study of modified logarithmic Sobolev inequalities. These can be used to show that systems are rapidly mixing and therefore unsuitable as self-correcting quantum memories.

Fourth measure of correlations: local indistinguishability

٩	<u>م</u>	0	٩	0	0	0	0	0	0	0	٩	٩	0
•	-	٩	٩	٩	٢	٩	٢	٩	٢	٩	٢	٩	٢
٩	٩	•	٩	٩	٩	0	0	0	0	0	٥	0	0
0	0	0	٥	•	_	٥	٩	0	0	0	٥	0	0
٩	٩	٩	٩	ں	>	٩	٩	٩	٢	٩	٩	٩	٩
٩	٩	٩	٥	٩	٩	٥	٩	٩	•	_0	٩	٩	٩
٩	٩	٩	٩	٩	٢	٩	٩	٩	୍	-	٢	٩	٩
٩	٩	٩	٩	٩	٩	٥	٩	٥	٩	٥	٥	٩	٥
٩	٩	٩	٩	٩	٩	٥	٩	٩	٩	٩	٩	٩	٥
٩	٩	0	٩	0	٩	0	٩	0	0	0	٩	0	•

Definition (Local indistinguishability)

Uniform local indistinguishability holds if there exist universal constants $K, \alpha \ge 0$ such that for all finite $\Lambda \subset \mathbb{Z}^g$, split as $\Lambda = ABC$ with B shielding A from C, and for all local operators O_A on A,

$$\begin{aligned} \left| \operatorname{Tr}_{ABC}[\rho^{AB} O_{A}] - \operatorname{Tr}_{AB}[\rho^{AB} O_{A}] \right| \\ \leq \left\| O_{A} \right\|_{\infty} f(A, C) \operatorname{K} e^{-\alpha \operatorname{dist}(A, C)} \end{aligned}$$

Decay of correlations in one dimension

Theorem

We consider again a quantum spin system on \mathbb{Z} with finite-range, translation-invariant interactions. In this setting, there exists a positive function $\ell \mapsto \delta_1(\ell)$, depending on the local interactions and exhibiting exponential decay, such that for every finite interval $I \subset \mathbb{Z}$ split into three subintervals I = ABC, where B shields A from C, the Gibbs state $\rho = e^{-H_l} / \operatorname{Tr}(e^{-H_l})$ satisfies

$$I_{\rho}(A:C) \leq \left\| \rho_A^{-1} \otimes \rho_C^{-1} \rho_{AC} - \mathbb{1} \right\|_{\infty} \leq \delta_1(|B|).$$

In other words, the mixing conditions holds at any finite non-zero temperature.

Equivalence between different measures of decay in one dimension

Araki's expansionals

Lemma (Araki 1969)

Let Φ be a local interaction with range r and strength J. For a finite interval $I = XY \subset \mathbb{Z}$ split into two subintervals X and Y, let us write

$$E_{X,Y} = e^{-H_{XY}} e^{H_X + H_Y}.$$

Then, there is an absolute constant $\mathcal{G} > 1$ depending only on J and r such that: (i) $||E_{X,Y}||$, $||E_{X,Y}^{-1}|| \leq \mathcal{G}$ (ii) If we add two intervals \widetilde{X} and \widetilde{Y} adjacent to X and Y, respectively, so that we get a larger interval $\widetilde{J} := \widetilde{X}XY\widetilde{Y}$, then

$$\left\| E_{X,Y}^{-1} - E_{\widetilde{X}X,Y\widetilde{Y}}^{-1} \right\|, \left\| E_{X,Y} - E_{\widetilde{X}X,Y\widetilde{Y}} \right\| \leq \frac{\mathcal{G}^{\ell}}{\left(\lfloor \ell/r \rfloor + 1 \right)!}.$$

for any $\ell \in \mathbb{N}$ such that $\ell \leq |X|, |Y|$.

Follows from Araki's complex time generalization of Lieb-Robinson bounds.

Decay of correlations in higher dimensions

Araki's expansionals

Reminder:
$$E_{X,Y}(s) = \mathrm{e}^{-sH_{XY}}\,\mathrm{e}^{sH_X+sH_Y}$$
 for every $s\in\mathbb{C}$

Lemma

Let A, B, C be disjoint finite sets and let Φ be a local interaction satisfying for some $\lambda,\mu>0$

$$\|\Phi\| = \|\Phi\|_{\lambda,\mu} := \sup_{x \in V} \sum_{X \ni x} \|\Phi_X\|_{\infty} e^{\lambda|X| + \mu \operatorname{diam}(X)} < \infty,$$

Then, for every real number β with $|\beta| < \frac{\lambda}{2\|\Phi\|}$ we have $\|E_{A,B}(\beta)\|_{\infty} \le \exp\{|\beta|\min\{|\partial A|, |\partial B|\}K\},\$

and

$$\begin{split} \| \mathcal{E}_{A,BC}(\beta) - \mathcal{E}_{A,B}(\beta) \|_{\infty} \\ &\leq \exp[|\beta|K|\partial A|]K'|\partial A|\exp\{-\frac{\mu}{2}\operatorname{dist}(A,C)\} \end{split}$$

Quantum belief propagation

- Was introduced by Hastings in 2007
- Consider a finite-range Hamiltonian *H* with perturbation *W*. We can write (using Dyson series):

$$e^{-\beta(H+W)} = \eta(W)e^{-\beta H}\eta(W)^*,$$

with $\|\eta(W)\| \leq e^{\beta \|W\|/2}$.

Can find a local approximation η_ℓ(W) supported within distance ℓ of supp W and with ||η_ℓ(W)|| ≤ e^{β||W||/2}. Approximation (using Lieb-Robinson bounds):

$$\|\eta(W)-\eta_\ell(W)\|\leq e^{c_1\|W\|}e^{-c_2\ell}\,.$$

• Similar statements hold for short-range instead of finite-range interactions (Capel et al. 2023).

Effective Hamiltonian - strong form

We can always write $\widetilde{H}_{\Lambda}^{L,\beta} := -\frac{1}{\beta} \log \mathbb{E}_{L}[e^{-\beta H_{\Lambda}}]$. We would hope that if H_{Λ} is local, so is the effective Hamiltonian $\widetilde{H}_{\Lambda}^{L,\beta}$ at high enough temperature.

Definition

Let us say that the above quantum spin system has (strong) local effective Hamiltonians at (inverse) temperature $\beta > 0$ if it satisfies the following property: for every $L \subset V$, there exists a local interaction $\widetilde{\Phi}^{L,\beta}$ on V satisfying (i) $\widetilde{\Phi}_X^{L,\beta}$ is supported in $X \cap L$ for every finite $X \subset V$. (ii) If $L' \subset V$, then $\widetilde{\Phi}_X^{L,\beta} = \widetilde{\Phi}_X^{L',\beta}$ for all finite $X \subset X$ such that $X \cap L' = X \cap L$. (iii) For every finite subset $\Lambda \subset V$

$$\widetilde{H}^{L,eta}_{\Lambda}:=-rac{1}{eta}\log \mathbb{E}_L[e^{-eta H_{\Lambda}}]=\sum_{X\subset \Lambda}\widetilde{\Phi}^{L,eta}_X\,.$$

We will say that $\tilde{\Phi}^{L,\beta}$ is the local effective interaction of the marginals $(\rho_{\beta}^{\Lambda})_{L}$ on L.

Effective Hamiltonian - weak form

Definition

Let us say that the above quantum spin system has (weak) local effective Hamiltonians at (inverse) temperature $\beta > 0$ if it satisfies the following property: for every subset $L \subset V$ there exists a local interaction $\widehat{\Phi}^{L,\beta}$ on V such that (i) $\widehat{\Phi}_{\mathbf{x}}^{L,\beta}$ is supported in $X \cap L$ for every finite $X \subset V$. (ii) $\widehat{\Phi}_{\mathbf{x}}^{L,\beta} = \widehat{\Phi}_{\mathbf{x}}^{L',\beta}$ for all finite subset $X \subset V$ and $L' \subset V$ satisfying $X \cap L' = X \cap L$. (iii) For every finite subset $\Lambda \subset V$ $\widehat{H}^{L,\beta}_{\Lambda} := -\frac{1}{\beta} \log \left(\operatorname{tr}_{\Lambda \setminus L}[e^{-\beta H_{\Lambda}}] \right) + \frac{1}{\beta} \log[Z_{\Lambda \setminus L}] \mathbb{1} = \sum \widehat{\Phi}^{L,\beta}_{X}.$

For general Hamiltonians, Kuwahara et al. 2019 claimed the existence of suitable weak effective Hamiltonians at high enough temperature using a non-commutative cluster expansion, but the results are faulty (present status unclear)

15

Why two notions of effective Hamiltonian?

- It can be checked that (ii) implies $\widetilde{\Phi}_X^{V,eta} = \Phi_X$ for every finite subset $X \subset V$
- We can write

$$-\frac{1}{\beta}\log\left(\mathrm{tr}_{\mathsf{A}\backslash L}[e^{-\beta H_{\mathsf{A}}}]\right) + \frac{1}{\beta}\log[Z_{\mathsf{A}\backslash L}]\mathbbm{1} = -\frac{1}{\beta}\log\left(\mathbbm{E}_{L}[e^{-\beta H_{\mathsf{A}}}]\right) + \frac{1}{\beta}\log\mathbbm{E}_{L}[e^{-\beta H_{\mathsf{A}\backslash L}}]\mathbbm{1}$$

- Can be used to check that the existence of a strong effective Hamiltonian implies that of a weak effective Hamiltonian
- We have neither proof nor counterexample for the reverse implication
- However, we can prove the existence of strong effective Hamiltonians with short range interactions under a Commuting Hypothesis:

Definition

Let us say that a local interaction Φ on V satisfies the Commuting Hypothesis if there is a commuting algebra $\mathcal{A} \subset \mathfrak{A}_V$ such that $\Phi_X \in \mathcal{A}$ for every finite $X \subset V$, and moreover, for every $L \subset V$ the conditional expectation $\mathbb{E}_L[\cdot]$ satisfies $\mathbb{E}_L[\mathcal{A}] \subset \mathcal{A}$.

Existence of strong effective Hamiltonians under the commuting hypothesis

Theorem

Let us consider a quantum spin system with local interaction Φ on V satisfying the Commuting Hypothesis and such that for some $\varepsilon > 0$

$$\|\Phi\|_{arepsilon,\mathbf{b}} = \sup_{x\in V}\sum_{X
i x} \|\Phi_X\| e^{arepsilon|X|+\mathbf{b}(X)} < \infty$$
 .

Then, for every $\beta \in \mathbb{C}$ with $|\beta| \leq \varepsilon/(2\|\Phi\|_{\varepsilon,\mathbf{b}})$ there are (strong) local effective Hamiltonians, namely for every $L \subset V$ there exists a local interaction $\widetilde{\Phi}^{L,\beta}$ on V satisfying (i)-(iii), and moreover

$$\|\widetilde{\Phi}^{L,\beta}\|_{\mathbf{b}} = \sup_{x \in V} \sum_{X \ni x} \|\widetilde{\Phi}_X^{L,\beta}\| e^{\mathbf{b}(X)} < \frac{\varepsilon}{2} \,.$$

For example, $\mathbf{b}(X) = \lambda |X| + \mu \operatorname{diam}(X)$.

Proof idea: cluster expansion (works as in the scalar case since everything commutes) 17

Main result

Theorem

Let Φ be a local interaction on $V = \mathbb{Z}^g$ satisfying for some $\lambda, \mu, \Delta > 0$

$$\|\Phi\|_{\lambda,\mu} = \sup_{x \in V} \sum_{X \ni x} \|\Phi_X\| e^{\lambda|X| + \mu \operatorname{diam}(X)} \le \Delta$$

Moreover, let $0 < \beta < \lambda/(2\Delta)$ be an inverse temperature such that:

- There is a weak local effective Hamiltonian at temperature $\beta > 0$, and for every $L \subset V$, the local interaction $\widehat{\Phi}^{L,\beta}$ satisfies $\|\widehat{\Phi}^{L,\beta}\|_{\lambda,\mu} \leq \Delta$.
- Φ satisfies $\epsilon(\ell)$ -clustering property.

Then, there exists constants $\hat{K}', c' > 0$ such that for every finite $\Lambda \subset V$ and every pair of disjoint subsets $A, C \subset \Lambda$, the local Gibbs state $\rho = \rho_{\beta}^{\Lambda}$ satisfies

$$\|\rho_{AC}\rho_A^{-1}\otimes\rho_C^{-1}-\mathbb{1}\|\leq \widehat{K}'e^{-c'\operatorname{dist}(A,C)}.$$

Moreover, $\widehat{K}' = \mathcal{O}(\min\{e^{|\partial A|}(|\partial A| + |C|g(A)), e^{|\partial C|}(|\partial C| + |A|g(C))\}).$

1. Use effective Hamiltonian to bound

$$\begin{split} \left\| \rho_{AC} \rho_{A}^{-1} \otimes \rho_{C}^{-1} - \mathbb{1}_{AC} \right\|_{\infty} \\ & \leq \left\| e^{-\beta \widehat{H}_{A}^{AC,\beta}} e^{\beta (\widehat{H}_{A}^{A,\beta} + \widehat{H}_{A}^{C,\beta})} \right\|_{\infty} |\kappa_{ABC} - 1| + \left\| e^{-\beta \widehat{H}_{A}^{AC,\beta}} e^{\beta (\widehat{H}_{A}^{A,\beta} + \widehat{H}_{A}^{C,\beta})} - \mathbb{1}_{AC} \right\|_{\infty}, \end{split}$$
where $\kappa_{ABC} = Z_{ABC} Z_B Z_{AB}^{-1} Z_{BC}^{-1}.$

- 2. Use Araki's expansionals to bound the operator norm terms.
- 3. Local indistinguishability can be proved from quantum belief propagation. It can in turn be used to estimate $|\kappa_{ABC} 1|$, combined with Araki's expansionals for the original interaction.

Do we need to assume the existence of an effective Hamiltonian in higher dimensions?

References

Based on:

- AB, Á. Capel, and A. Pérez-Hernández. "Exponential decay of mutual information for Gibbs states of local Hamiltonians". In: *Quantum* 6 (2022), p. 650.
- AB, Á. Capel, and A. Pérez-Hernández. "Strong decay of correlations for Gibbs states in any dimension". In: *arXiv preprint* arXiv:2401.10147 (2024).

Related work:

- H. Araki. "Gibbs states of the one-dimensional quantum spin chain". In: *Commun. Math. Phys.* 14 (1969), pp. 120–157.
- M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert. "Locality of temperature". In: *Phys. Rev. X* 4 (2014), p. 031019.
- K. Kato and F. G. S. L. Brandão. "Quantum approximate Markov chains are thermal". In: *Commun. Math. Phys.* 370 (2019), pp. 117–149.
- T. Kuwahara, K. Kato, and F. G. S. L. Brandão. "Clustering of conditional mutual information for quantum Gibbs states above a threshold temperature". In: *Phys. Rev. Lett.* 124 (2020), p. 220601.
- A. Capel, M. Moscolari, S. Teufel, and T. Wessel. "From decay of correlations to locality and stability of the Gibbs state". In: *arXiv preprint* arXiv:2310.09182 (2023).