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Introduction

e Quantum systems are governed by their

c = Hamiltonians

S ~ g e Often, we want to learn the Hamiltonian
% |:> 'v%'é' ‘I::> % from access to its time evolution

%) bl S e What happens if we only want to test a
e = property (e.g. whether it is local)? Is this

an easier problem?



e Consider a system of n qubits, dimension 2"
e Pauli expansion on n-qubits: H =) pcp apP, where P, = {/, X, Y, zZyen

Learning:

e For learning, you want your algorithm to output an estimator H such that
’HH _ HH < ¢ with probability at least 2/3

e Often, learning algorithms assume that the Hamiltonian they want to learn is local

Locality:

e We call the Hamiltonian H k-local (k-body) if ap = 0 holds for all P € P, with
|P| > k. Here, |P| denotes the number of non-identity tensor factors in P

e Example: X ® 1 ®1® X is 2-local, X® Y ® Z ® X is 4-local



Problem statement

Definition (Hamiltonian locality testing)

Given a locality parameter 1 < k < n, a norm |[|-|||, and an accuracy parameter
e € (0,1), the Hamiltonian k-locality testing problem, denoted as 7]?‘1”‘3(6) is the
following task: Given access to the time evolution according to an unknown

Hamiltonian H, decide, with success probability > 2/3, whether
(i) H is k-local, or
(ii) H is e-far from being k-local, i.e., ‘HH - HW > ¢ for all k-local Hamiltonians H.

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

This is a promise problem. Instead of 2/3 we could take any constant probability larger
than 1/2.



Different types of algorithms

Incoherent adaptive strategy

Ue(-) =

e

—itH _ gitH

, M measurement

Coherent strategy

-

N arbitrary quantum channel




Hardness of Hamiltonian locality testing w.r.t. the operator norm

Theorem

For k < O(n), any ancilla-free, incoherent, adaptive quantum algorithm that solves the
k-locality testing problem III'(TICOQ (€), even only under the additional promise that the
unknown Hamiltonian H satisfies tr[H] = 0 and ||H||, < 1, has to make at least

N > Q2 (2") queries to the unknown Hamiltonian and has to use an expected total
evolution time of at least E[T] > Q (%). Even any coherent quantum algorithm
achieving the same has to make at least N > Q (2”/2) many queries and has to use a

total evolution time of at least T > ) (ﬁ>

&1

This result actually rules out efficient property testing in any Schatten p-norm



e |dentify distinguishing problem that a successful locality tester must be able to solve

e Promise problem: Either (i) H =0 or (ii) H=¢(V|0)(0| VT — 1/d), where V is a
Haar-random n-qubit unitary

e Concentration of measure: In case (ii), H is e-far from k-local

e Use Le Cam’s method to argue that the outcome distributions in the two cases have

constant total variation distance
e Pinsker's inequality: Replace total variation distance by Kullback-Leibler divergence

e Then Taylor expansion and Weingarten calculus to find upper bound in terms of the

evolution time



Efficient Hamiltonian locality testing w.r.t. normalized Frobenius norm

e Locality testing with respect to p-norms is hard
e What if we use instead the norm |||-[|| = 2="/2|| - ||o, where ||A]l2 = (tr[ATA])1/? is the
Frobenius norm?

e This represents the average case setting, whereas ||-|| ., corresponds the worse case

Theorem
Let k < O(n). When promised that the unknown Hamiltonian H satisfies tr[H] = 0
and ||H||,, <1, there is an ancilla-free, incoherent, non-adaptive quantum algorithm

that solves the Hamiltonian k-locality testing problem T9¢ W (€) using O (6_4) many
Vvan 2

queries to the unknown Hamiltonian, a total evolution time of O (5‘3), and a classical

o o k+3 o o oo
post-processing time of O (”; ) Moreover, the testing algorithm uses only stabilizer

states as inputs and stabilizer basis measurements at the output.



Description of the algorithm

e We construct d + 1 stabilizer bases B; = {|¢; ) }jec(1,...4y from maximal Abelian
subgroups of the Pauli group. A QC can prepare and measure them efficiently.

Efficient algorithm for locality testing (polynomial runtime)

Choose (i, /) € [d + 1] x [d] uniformly at random and prepare the state |¢; ;)
Let it evolve under the unknown Hamiltonian H for time t = O(¢)

Perform a measurement in the basis 3; and observe outcome ¢

Repeat this procedure N = O(s7*) times

O O NS

If at least one of the NV rounds produces an output £ such that
‘ <¢,‘7g‘ P|¢,'7j> | =0 forall P e P, with |P‘ <k,
then we conclude that H is e-far from k-local. Otherwise, we claim that H is k-local.

The checks in the last step can be efficiently performed on a classical computer



Consider a simpler version with commuting Hamiltonians consisting of terms from
{1, X}®",10)0| as input state, and computational basis measurement
Note that |j) = X/ |0) for any j € {0,1}" and that U; = 't ~ | + itH for short t
For any n-bit string j with weight |j| > 0, it holds that | (j| U; |0) |2 &~ t2|ay;|?
If H is indeed k-local, then ary; = 0 holds whenever |j| > k, and we find that
> 1l Ueloy P ~0,

J:lil>k
i.e., we make approximately no error
Conversely, if H is e-far from any k-local Hamiltonian, then 3~ .- laxi|? > €2
Thus, 3>k | Ul Ut 0) ? % t%€?
Repeating O(t~2c72) times makes success probability constant
To make the proof precise, we need to deal with higher order terms and

non-commutative Hamiltonians o



Hardness of Hamiltonian learning w.r.t. normalized Frobenius norm

Theorem

Any (even coherent) quantum algorithm with a constant number of auxiliary qubits
that, when given time evolution access to an arbitrary n-qubit Hamiltonian H,
promised to satisfy tr[H] = 0 and ||H||, < 1, with success probability > 2/3, outputs
(the classical description of) a Hamiltonian H such that \/LT"HH - A H2 < ¢ has to

make at least Q (22") many queries to H.
Any non-adaptive incoherent quantum algorithm achieving the same without auxiliary
qubits has to use a total evolution time of at least Q (2?2")
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Proof idea (1/2)

0 o . =2 2n
e We want to prove that learning w.r.t. the norm. Frobenius norm is hard (Q(%) total
evolution time).

e Strategy: Identify a distinguishing problem (probabilistic argument) that any
successful general Hamiltonian learner can solve

e Lower bounds for that distinguishing task through information-theoretic arguments

e Construct M = exp(€2(4")) unitaries Uy such that the Hamiltonians H, = U, OUL
5, O =diag(+1,...,+1,-1,...,-1)

e How the construction works: Take the unitaries to be Haar random and use

are pairwise e-far apart w.r.t. —\/12—”\\]

concentration of measure

e Existence of the M unitaries Uy then follows via a union bound
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Proof idea (2/2)

e Fano's inequality: mutual information lower bound Z(X : Y) > Q(log M) > Q(4"),
where X ~ Uniform([M]) and Y outcomes observed by the learner

e For coherent learners, just bound the mutual information in terms of the dimension of

the systems involved
e For incoherent learners, use H2 = £2/ and therefore e = cos(te)/ +isin(te) U, OU}

e Carefully use Weingarten calculus to upper bound mutual information in terms of

total evolution time
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Testing properties (1/2)

e We have so far focused on testing locality
e We can actually test any property, i.e., whether H has only terms in some subset

S C P, oris at least e-far from it

Theorem

Let S C P, such that |SU{l}| < (2n;i)54, and let € € (0,1). Suppose that the
Hamiltonian H satisfies tr(H) = 0 and ||H|
non-adaptive algorithm that tests whether H has only terms in S or \/%HH —Kl2>e¢

s < 1. Then, there exists an incoherent

for all such Hamiltonians K with probability at least 2/3 using a total evolution time

@ (6_3), a total number of independent experiments N = O (5_4), and a total

n|SU{/}|
4

classical processing time O ( ) Each experiment uses efficiently

implementable states and measurements.

e For locality, |S| < (3n)k+1 14




Testing properties (2/2)

o What to do if [SU {/}| > @D

144
144-|SU{I}|

e In that case, we can add nyux = {Iogz (Tﬂ ancilla qubits to obtain a similar
statement as before
e Number of samples and total evolution time do not depend on |S|, but classical
post-processing will no longer be efficient
Results that did not make it into this talk:

e We can actually test M properties at the same time with only log M overhead

e We can also do tolerant property testing (checking whether H is £1-close to having S
of at least ep-far from any such Hamiltonian, for €1 < €3)
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Open questions

Some open questions:

Are our bounds optimal? Is the scaling N = O(¢~*) necessary?

In particular, can we achieve Heisenberg scaling?

What about other distance measures, such as Wasserstein distances?

What about other access models, e.g., locality testing from Gibbs states?

Can we test properties of Lindblad generators?
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We have considered the task of locality testing, i.e., testing whether a Hamiltonian is
k-local or e-far from any such Hamiltonian

We have found a setting in which learning is hard, but in which we can give an
efficient algorithm for locality testing, thereby separating the two tasks

For more details, see

arXiv:2403.02968
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