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Introduction

� Quantum systems are governed by their

Hamiltonians

� Often, we want to learn the Hamiltonian

from access to its time evolution

� What happens if we only want to test a

property (e.g. whether it is local)? Is this

an easier problem?
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Setup

� Consider a system of n qubits, dimension 2n

� Pauli expansion on n-qubits: H =
∑

P∈Pn
αPP, where Pn = {I ,X ,Y ,Z}⊗n

Learning:

� For learning, you want your algorithm to output an estimator Ĥ such that∣∣∣∣∣∣∣∣∣Ĥ − H
∣∣∣∣∣∣∣∣∣ ≤ ε with probability at least 2/3

� Often, learning algorithms assume that the Hamiltonian they want to learn is local

Locality:

� We call the Hamiltonian H k-local (k-body) if αP = 0 holds for all P ∈ Pn with

|P| > k . Here, |P| denotes the number of non-identity tensor factors in P

� Example: X ⊗ I ⊗ I ⊗ X is 2-local, X ⊗ Y ⊗ Z ⊗ X is 4-local
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Problem statement

Definition (Hamiltonian locality testing)

Given a locality parameter 1 ≤ k ≤ n, a norm |||·|||, and an accuracy parameter

ε ∈ (0, 1), the Hamiltonian k-locality testing problem, denoted as T loc
|||·||| (ε), is the

following task: Given access to the time evolution according to an unknown

Hamiltonian H, decide, with success probability ≥ 2/3, whether

(i) H is k-local, or

(ii) H is ε-far from being k-local, i.e.,
∣∣∣∣∣∣∣∣∣H − H̃

∣∣∣∣∣∣∣∣∣ ≥ ε for all k-local Hamiltonians H̃.

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

This is a promise problem. Instead of 2/3 we could take any constant probability larger

than 1/2.
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Different types of algorithms
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Hardness of Hamiltonian locality testing w.r.t. the operator norm

Theorem

For k ≤ Õ(n), any ancilla-free, incoherent, adaptive quantum algorithm that solves the

k-locality testing problem T loc
∥·∥∞

(ε), even only under the additional promise that the

unknown Hamiltonian H satisfies tr[H] = 0 and ∥H∥∞ ≤ 1, has to make at least

N ≥ Ω̃ (2n) queries to the unknown Hamiltonian and has to use an expected total

evolution time of at least E[T ] ≥ Ω̃
(
2n

ε

)
. Even any coherent quantum algorithm

achieving the same has to make at least N ≥ Ω
(
2n/2

)
many queries and has to use a

total evolution time of at least T ≥ Ω
(
2n/2

ε

)
.

This result actually rules out efficient property testing in any Schatten p-norm
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Proof idea

� Identify distinguishing problem that a successful locality tester must be able to solve

� Promise problem: Either (i) H = 0 or (ii) H = ε(V |0⟩⟨0|V † − I/d), where V is a

Haar-random n-qubit unitary

� Concentration of measure: In case (ii), H is ε-far from k-local

� Use Le Cam’s method to argue that the outcome distributions in the two cases have

constant total variation distance

� Pinsker’s inequality: Replace total variation distance by Kullback-Leibler divergence

� Then Taylor expansion and Weingarten calculus to find upper bound in terms of the

evolution time
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Efficient Hamiltonian locality testing w.r.t. normalized Frobenius norm

� Locality testing with respect to p-norms is hard

� What if we use instead the norm |||·||| = 2−n/2∥ · ∥2, where ∥A∥2 = (tr[A†A])1/2 is the

Frobenius norm?

� This represents the average case setting, whereas ∥·∥∞ corresponds the worse case

Theorem

Let k ≤ Õ(n). When promised that the unknown Hamiltonian H satisfies tr[H] = 0

and ∥H∥∞ ≤ 1, there is an ancilla-free, incoherent, non-adaptive quantum algorithm

that solves the Hamiltonian k-locality testing problem T loc
1√
2n

∥·∥2
(ε) using O

(
ε−4

)
many

queries to the unknown Hamiltonian, a total evolution time of O
(
ε−3

)
, and a classical

post-processing time of O
(
nk+3

ε4

)
. Moreover, the testing algorithm uses only stabilizer

states as inputs and stabilizer basis measurements at the output.
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Description of the algorithm

� We construct d + 1 stabilizer bases Bi = {|ϕi ,j⟩}j∈{1,...,d} from maximal Abelian

subgroups of the Pauli group. A QC can prepare and measure them efficiently.

Efficient algorithm for locality testing (polynomial runtime)

1. Choose (i , j) ∈ [d + 1]× [d ] uniformly at random and prepare the state |ϕi ,j⟩
2. Let it evolve under the unknown Hamiltonian H for time t = O(ε)

3. Perform a measurement in the basis Bi and observe outcome ℓ

4. Repeat this procedure N = O(ε−4) times

5. If at least one of the N rounds produces an output ℓ such that

| ⟨ϕi ,ℓ|P |ϕi ,j⟩ | = 0 for all P ∈ Pn with |P| ≤ k ,

then we conclude that H is ε-far from k-local. Otherwise, we claim that H is k-local.

The checks in the last step can be efficiently performed on a classical computer
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Proof idea

� Consider a simpler version with commuting Hamiltonians consisting of terms from

{I ,X}⊗n, |0⟩⟨0| as input state, and computational basis measurement

� Note that |j⟩ = X j |0⟩ for any j ∈ {0, 1}n and that Ut = eitH ≈ I + itH for short t

� For any n-bit string j with weight |j | > 0, it holds that | ⟨j |Ut |0⟩ |2 ≈ t2|αX j |2

� If H is indeed k-local, then αX j = 0 holds whenever |j | > k, and we find that∑
j :|j |>k

| ⟨j |Ut |0⟩ |2 ≈ 0 ,

i.e., we make approximately no error

� Conversely, if H is ε-far from any k-local Hamiltonian, then
∑

j :|j |>k |αX j |2 ≥ ε2

� Thus,
∑

j :|j |>k | ⟨j |Ut |0⟩ |2 ⪆ t2ε2

� Repeating O(t−2ε−2) times makes success probability constant

� To make the proof precise, we need to deal with higher order terms and

non-commutative Hamiltonians
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Hardness of Hamiltonian learning w.r.t. normalized Frobenius norm

Theorem

Any (even coherent) quantum algorithm with a constant number of auxiliary qubits

that, when given time evolution access to an arbitrary n-qubit Hamiltonian H,

promised to satisfy tr[H] = 0 and ∥H∥∞ ≤ 1 , with success probability ≥ 2/3, outputs

(the classical description of) a Hamiltonian Ĥ such that 1√
2n

∥∥∥H − Ĥ
∥∥∥
2
≤ ε has to

make at least Ω̃
(
22n

)
many queries to H.

Any non-adaptive incoherent quantum algorithm achieving the same without auxiliary

qubits has to use a total evolution time of at least Ω̃
(
22n

ε

)
.
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Proof idea (1/2)

� We want to prove that learning w.r.t. the norm. Frobenius norm is hard (Ω̃(2
2n

ε ) total

evolution time).

� Strategy: Identify a distinguishing problem (probabilistic argument) that any

successful general Hamiltonian learner can solve

� Lower bounds for that distinguishing task through information-theoretic arguments

� Construct M = exp(Ω(4n)) unitaries Ux such that the Hamiltonians Hx = εUxOU
†
x

are pairwise ε-far apart w.r.t. 1√
2n
∥·∥2, O = diag(+1, . . . ,+1,−1, . . . ,−1)

� How the construction works: Take the unitaries to be Haar random and use

concentration of measure

� Existence of the M unitaries Ux then follows via a union bound
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Proof idea (2/2)

� Fano’s inequality: mutual information lower bound I(X : Y ) ≥ Ω(logM) ≥ Ω(4n),

where X ∼ Uniform([M]) and Y outcomes observed by the learner

� For coherent learners, just bound the mutual information in terms of the dimension of

the systems involved

� For incoherent learners, use H2
x = ε2I and therefore eitHx = cos(tε)I + i sin(tε)UxOU

†
x

� Carefully use Weingarten calculus to upper bound mutual information in terms of

total evolution time
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Testing properties (1/2)

� We have so far focused on testing locality

� We can actually test any property, i.e., whether H has only terms in some subset

S ⊂ Pn or is at least ε-far from it

Theorem

Let S ⊂ Pn such that |S ∪ {I}| ≤ (2n+1)ε4

144 , and let ε ∈ (0, 1). Suppose that the

Hamiltonian H satisfies tr(H) = 0 and ∥H∥∞ ≤ 1. Then, there exists an incoherent

non-adaptive algorithm that tests whether H has only terms in S or 1√
2n
∥H − K∥2 > ε

for all such Hamiltonians K with probability at least 2/3 using a total evolution time

O
(
ε−3

)
, a total number of independent experiments N = O

(
ε−4

)
, and a total

classical processing time O
(
n2|S∪{I}|

ε4

)
. Each experiment uses efficiently

implementable states and measurements.

� For locality, |S| ≤ (3n)k+1
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Testing properties (2/2)

� What to do if |S ∪ {I}| > (2n+1)ε4

144 ?

� In that case, we can add naux =
⌈
log2

(
144·|S∪{I}|

2nε4

)⌉
ancilla qubits to obtain a similar

statement as before

� Number of samples and total evolution time do not depend on |S|, but classical
post-processing will no longer be efficient

Results that did not make it into this talk:

� We can actually test M properties at the same time with only logM overhead

� We can also do tolerant property testing (checking whether H is ε1-close to having S
of at least ε2-far from any such Hamiltonian, for ε1 < ε2)
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Open questions

Some open questions:

� Are our bounds optimal? Is the scaling N = O(ϵ−4) necessary?

� In particular, can we achieve Heisenberg scaling?

� What about other distance measures, such as Wasserstein distances?

� What about other access models, e.g., locality testing from Gibbs states?

� Can we test properties of Lindblad generators?
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Summary

We have considered the task of locality testing, i.e., testing whether a Hamiltonian is

k-local or ε-far from any such Hamiltonian

We have found a setting in which learning is hard, but in which we can give an

efficient algorithm for locality testing, thereby separating the two tasks

For more details, see

arXiv:2403.02968
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