Hamiltonian Property Testing

Andreas Bluhm- Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

joint work with Matthias C. Caro and Aadil Oufkir

- Quantum systems are governed by their Hamiltonians
- Often, we want to learn the Hamiltonian from access to its time evolution
- What happens if we only want to test a property (e.g. whether it is local)? Is this an easier problem?

Setup

- Consider a system of n qubits, dimension 2^n
- Pauli expansion on *n*-qubits: $H = \sum_{P \in \mathbb{P}_n} \alpha_P P$, where $\mathbb{P}_n = \{I, X, Y, Z\}^{\otimes n}$

Learning:

- For learning, you want your algorithm to output an estimator \hat{H} such that $\||\hat{H} H||| \le \varepsilon$ with probability at least 2/3
- Often, learning algorithms assume that the Hamiltonian they want to learn is local Locality:
- We call the Hamiltonian H k-local (k-body) if $\alpha_P = 0$ holds for all $P \in \mathbb{P}_n$ with |P| > k. Here, |P| denotes the number of non-identity tensor factors in P
- Example: $X \otimes I \otimes I \otimes X$ is 2-local, $X \otimes Y \otimes Z \otimes X$ is 4-local

Definition (Hamiltonian locality testing)

Given a locality parameter $1 \le k \le n$, a norm $||| \cdot |||$, and an accuracy parameter $\varepsilon \in (0, 1)$, the Hamiltonian *k*-locality testing problem, denoted as $\mathcal{T}_{||| \cdot |||}^{\text{loc}}(\varepsilon)$, is the following task: Given access to the time evolution according to an unknown Hamiltonian *H*, decide, with success probability $\ge 2/3$, whether

(i) H is k-local, or

(ii) *H* is ε -far from being *k*-local, i.e., $\left\| \left\| H - \tilde{H} \right\| \right\| \ge \varepsilon$ for all *k*-local Hamiltonians \tilde{H} . If *H* satisfies neither (i) nor (ii), then any output of the tester is considered valid.

This is a promise problem. Instead of 2/3 we could take any constant probability larger than 1/2.

Different types of algorithms

Coherent strategy

 \mathcal{N}_i arbitrary quantum channel

Theorem

For $k \leq \tilde{\mathcal{O}}(n)$, any ancilla-free, incoherent, adaptive quantum algorithm that solves the k-locality testing problem $\mathcal{T}_{\|\cdot\|_{\infty}}^{\mathrm{loc}}(\varepsilon)$, even only under the additional promise that the unknown Hamiltonian H satisfies $\mathrm{tr}[H] = 0$ and $\|H\|_{\infty} \leq 1$, has to make at least $N \geq \tilde{\Omega}(2^n)$ queries to the unknown Hamiltonian and has to use an expected total evolution time of at least $\mathbb{E}[T] \geq \tilde{\Omega}\left(\frac{2^n}{\varepsilon}\right)$. Even any coherent quantum algorithm achieving the same has to make at least $N \geq \Omega\left(2^{n/2}\right)$ many queries and has to use a total evolution time of at least $T \geq \Omega\left(\frac{2^{n/2}}{\varepsilon}\right)$.

This result actually rules out efficient property testing in any Schatten p-norm

- Identify distinguishing problem that a successful locality tester must be able to solve
- Promise problem: Either (i) H = 0 or (ii) $H = \varepsilon(V | 0 \rangle \langle 0 | V^{\dagger} I/d)$, where V is a Haar-random *n*-qubit unitary
- Concentration of measure: In case (ii), H is ε -far from k-local
- Use Le Cam's method to argue that the outcome distributions in the two cases have constant total variation distance
- Pinsker's inequality: Replace total variation distance by Kullback-Leibler divergence
- Then Taylor expansion and Weingarten calculus to find upper bound in terms of the evolution time

Efficient Hamiltonian locality testing w.r.t. normalized Frobenius norm

- Locality testing with respect to *p*-norms is hard
- What if we use instead the norm $\|\|\cdot\|\| = 2^{-n/2}\|\cdot\|_2$, where $\|A\|_2 = (tr[A^{\dagger}A])^{1/2}$ is the Frobenius norm?
- This represents the average case setting, whereas $\left\|\cdot\right\|_{\infty}$ corresponds the worse case

Theorem

Let $k \leq \tilde{\mathcal{O}}(n)$. When promised that the unknown Hamiltonian H satisfies $\operatorname{tr}[H] = 0$ and $\|H\|_{\infty} \leq 1$, there is an ancilla-free, incoherent, non-adaptive quantum algorithm that solves the Hamiltonian k-locality testing problem $\mathcal{T}_{\frac{1}{\sqrt{2^n}}\|\cdot\|_2}^{\operatorname{loc}}(\varepsilon)$ using $\mathcal{O}(\varepsilon^{-4})$ many queries to the unknown Hamiltonian, a total evolution time of $\mathcal{O}(\varepsilon^{-3})$, and a classical post-processing time of $\mathcal{O}\left(\frac{n^{k+3}}{\varepsilon^4}\right)$. Moreover, the testing algorithm uses only stabilizer states as inputs and stabilizer basis measurements at the output.

Description of the algorithm

• We construct d + 1 stabilizer bases $\mathcal{B}_i = \{ |\phi_{i,j}\rangle \}_{j \in \{1,...,d\}}$ from maximal Abelian subgroups of the Pauli group. A QC can prepare and measure them efficiently.

Efficient algorithm for locality testing (polynomial runtime)

- 1. Choose $(i,j) \in [d+1] \times [d]$ uniformly at random and prepare the state $|\phi_{i,j}
 angle$
- 2. Let it evolve under the unknown Hamiltonian H for time $t = \mathcal{O}(\varepsilon)$
- 3. Perform a measurement in the basis \mathcal{B}_i and observe outcome ℓ
- 4. Repeat this procedure $N = \mathcal{O}(\varepsilon^{-4})$ times
- 5. If at least one of the N rounds produces an output ℓ such that

 $|\langle \phi_{i,\ell}| P |\phi_{i,j} \rangle| = 0$ for all $P \in \mathbb{P}_n$ with $|P| \leq k$,

then we conclude that H is ε -far from k-local. Otherwise, we claim that H is k-local.

The checks in the last step can be efficiently performed on a classical computer

Proof idea

- Consider a simpler version with commuting Hamiltonians consisting of terms from $\{I, X\}^{\otimes n}$, $|0\rangle\langle 0|$ as input state, and computational basis measurement
- Note that $|j\rangle = X^j \, |0
 angle$ for any $j\in\{0,1\}^n$ and that $U_t = \mathrm{e}^{\mathrm{i} t H} pprox I + \mathrm{i} t H$ for short t
- For any *n*-bit string *j* with weight |j| > 0, it holds that $|\langle j| | U_t | 0 \rangle|^2 \approx t^2 |\alpha_{\chi j}|^2$
- If H is indeed k-local, then $\alpha_{\chi j} = 0$ holds whenever |j| > k, and we find that

$$\sum_{|j|>k} |\langle j| U_t |0\rangle|^2 \approx 0,$$

i.e., we make approximately no error

- Conversely, if H is ε -far from any k-local Hamiltonian, then $\sum_{i:|i|>k} |\alpha_{X^j}|^2 \ge \varepsilon^2$
- Thus, $\sum_{j:|j|>k} |\langle j| \; U_t \left| 0 \right\rangle |^2 \gtrapprox t^2 \varepsilon^2$
- Repeating $\mathcal{O}(t^{-2} \varepsilon^{-2})$ times makes success probability constant
- To make the proof precise, we need to deal with higher order terms and non-commutative Hamiltonians

Theorem

Any (even coherent) quantum algorithm with a constant number of auxiliary qubits that, when given time evolution access to an arbitrary n-qubit Hamiltonian H, promised to satisfy tr[H] = 0 and $||H||_{\infty} \leq 1$, with success probability $\geq 2/3$, outputs (the classical description of) a Hamiltonian \hat{H} such that $\frac{1}{\sqrt{2^n}} ||H - \hat{H}||_2 \leq \varepsilon$ has to make at least $\tilde{\Omega}(2^{2n})$ many queries to H. Any non-adaptive incoherent quantum algorithm achieving the same without auxiliary qubits has to use a total evolution time of at least $\tilde{\Omega}(\frac{2^{2n}}{\varepsilon})$.

- We want to prove that learning w.r.t. the norm. Frobenius norm is hard $(\tilde{\Omega}(\frac{2^{2n}}{\varepsilon})$ total evolution time).
- Strategy: Identify a distinguishing problem (probabilistic argument) that any successful general Hamiltonian learner can solve
- Lower bounds for that distinguishing task through information-theoretic arguments
- Construct M = exp(Ω(4ⁿ)) unitaries U_x such that the Hamiltonians H_x = εU_xOU_x[†] are pairwise ε-far apart w.r.t. ¹/_{√2ⁿ} ||·||₂, O = diag(+1,...,+1,-1,...,-1)
- How the construction works: Take the unitaries to be Haar random and use concentration of measure
- Existence of the M unitaries U_{x} then follows via a union bound

- Fano's inequality: mutual information lower bound *I*(X : Y) ≥ Ω(log M) ≥ Ω(4ⁿ), where X ~ Uniform([M]) and Y outcomes observed by the learner
- For coherent learners, just bound the mutual information in terms of the dimension of the systems involved
- For incoherent learners, use $H_x^2 = \varepsilon^2 I$ and therefore $e^{itH_x} = \cos(t\varepsilon)I + i\sin(t\varepsilon)U_xOU_x^{\dagger}$
- Carefully use Weingarten calculus to upper bound mutual information in terms of total evolution time

Testing properties (1/2)

- We have so far focused on testing locality
- We can actually test any property, i.e., whether H has only terms in some subset $S \subset \mathbb{P}_n$ or is at least ε -far from it

Theorem

Let $S \subset \mathbb{P}_n$ such that $|S \cup \{I\}| \leq \frac{(2^n+1)\varepsilon^4}{144}$, and let $\varepsilon \in (0,1)$. Suppose that the Hamiltonian H satisfies $\operatorname{tr}(H) = 0$ and $||H||_{\infty} \leq 1$. Then, there exists an incoherent non-adaptive algorithm that tests whether H has only terms in S or $\frac{1}{\sqrt{2^n}} ||H - K||_2 > \varepsilon$ for all such Hamiltonians K with probability at least 2/3 using a total evolution time $\mathcal{O}(\varepsilon^{-3})$, a total number of independent experiments $N = \mathcal{O}(\varepsilon^{-4})$, and a total classical processing time $\mathcal{O}\left(\frac{n^2|S \cup \{I\}|}{\varepsilon^4}\right)$. Each experiment uses efficiently implementable states and measurements.

• For locality, $|\mathcal{S}| \leq (3n)^{k+1}$

Testing properties (2/2)

- What to do if $|\mathcal{S} \cup \{I\}| > \frac{(2^n+1)\varepsilon^4}{144}$?
- In that case, we can add $n_{aux} = \left\lceil \log_2\left(\frac{144 \cdot |S \cup \{I\}|}{2^n \varepsilon^4}\right) \right\rceil$ ancilla qubits to obtain a similar statement as before
- Number of samples and total evolution time do not depend on |S|, but classical post-processing will no longer be efficient

Results that did not make it into this talk:

- We can actually test M properties at the same time with only log M overhead
- We can also do tolerant property testing (checking whether H is ε₁-close to having S of at least ε₂-far from any such Hamiltonian, for ε₁ < ε₂)

Some open questions:

- Are our bounds optimal? Is the scaling $N = O(\epsilon^{-4})$ necessary?
- In particular, can we achieve Heisenberg scaling?
- What about other distance measures, such as Wasserstein distances?
- What about other access models, e.g., locality testing from Gibbs states?
- Can we test properties of Lindblad generators?

We have considered the task of locality testing, i.e., testing whether a Hamiltonian is k-local or ε -far from any such Hamiltonian

We have found a setting in which learning is hard, but in which we can give an efficient algorithm for locality testing, thereby separating the two tasks

For more details, see

arXiv:2403.02968