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Introduction

e Quantum systems are governed by their

c = Hamiltonians

S ~ g e Often, we want to learn the Hamiltonian
% |:> 'v%'é' ‘I::> % from access to its time evolution

%) bl S e What happens if we only want to test a
e = property (e.g. whether it is local)? Is this

an easier problem?



e Consider a system of n qubits, dimension 2"
e Pauli expansion on n-qubits: H =) pcp apP, where P, = {/, X, Y, zZyen

Learning:

e For learning, you want your algorithm to output an estimator H such that
’HH _ HH < ¢ with probability at least 2/3

e Often, learning algorithms assume that the Hamiltonian they want to learn is local

Locality:

e We call the Hamiltonian H k-local (k-body) if ap = 0 holds for all P € P, with
|P| > k. Here, |P| denotes the number of non-identity tensor factors in P

e Example: X ® 1 ®1® X is 2-local, X® Y ® Z ® X is 4-local



Problem statement

Definition (Hamiltonian locality testing)

Given a locality parameter 1 < k < n, a norm |[|-|||, and an accuracy parameter
e € (0,1), the Hamiltonian k-locality testing problem, denoted as 7]?‘1”‘3(6) is the
following task: Given access to the time evolution according to an unknown

Hamiltonian H, decide, with success probability > 2/3, whether
(i) H is k-local, or
(ii) H is e-far from being k-local, i.e., ‘HH - HW > ¢ for all k-local Hamiltonians H.

If H satisfies neither (i) nor (ii), then any output of the tester is considered valid.

This is a promise problem. Instead of 2/3 we could take any constant probability larger
than 1/2.



Different types of algorithms

Incoherent adaptive strategy
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Coherent strategy
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Hardness of Hamiltonian locality testing w.r.t. the operator norm

Theorem

For k < O(n), any ancilla-free, incoherent, adaptive quantum algorithm that solves the
k-locality testing problem III'(TICOQ (€), even only under the additional promise that the
unknown Hamiltonian H satisfies tr[H] = 0 and ||H||, < 1, has to make at least

N > Q2 (2") queries to the unknown Hamiltonian and has to use an expected total
evolution time of at least E[T] > Q (%). Even any coherent quantum algorithm
achieving the same has to make at least N > Q (2”/2) many queries and has to use a

total evolution time of at least T > ) (ﬁ>

&1

This result actually rules out efficient property testing in any Schatten p-norm



Efficient Hamiltonian locality testing w.r.t. normalized Frobenius norm

e Locality testing with respect to p-norms is hard
e What if we use instead the norm |[|-[| = 2="/2| - ||o, where ||Al2 = (tr[A*A])/2 is the
Frobenius norm?

e This represents the average case setting, whereas ||-|| ., corresponds the worse case

Theorem
Let k < O(n). When promised that the unknown Hamiltonian H satisfies tr[H] = 0
and ||H||,, <1, there is an ancilla-free, incoherent, non-adaptive quantum algorithm

that solves the Hamiltonian k-locality testing problem T9¢ W (€) using O (6_4) many
Vvan 2

queries to the unknown Hamiltonian, a total evolution time of O (5‘3), and a classical

o o k+3 o o oo
post-processing time of O (”; ) Moreover, the testing algorithm uses only stabilizer

states as inputs and stabilizer basis measurements at the output.



Description of the algorithm

e We construct d + 1 stabilizer bases B; = {|¢; ) }jec(1,...4y from maximal Abelian
subgroups of the Pauli group. A QC can prepare and measure them efficiently.

Efficient algorithm for locality testing (polynomial runtime)

Choose (i, /) € [d + 1] x [d] uniformly at random and prepare the state |¢; ;)
Let it evolve under the unknown Hamiltonian H for time t = O(¢)

Perform a measurement in the basis 3; and observe outcome ¢

Repeat this procedure N = O(s7*) times

O O NS

If at least one of the NV rounds produces an output £ such that
‘ <¢,‘7g‘ P|¢,'7j> | =0 forall P e P, with |P‘ <k,
then we conclude that H is e-far from k-local. Otherwise, we claim that H is k-local.

The checks in the last step can be efficiently performed on a classical computer



e Consider a simpler version with commuting Hamiltonians consisting of terms from
{1, X}®",10)0| as input state, and computational basis measurement
e Note that [j) = X/ |0) for any j € {0,1}" and that U; = 't ~ | +itH for short t
e For any n-bit string j with weight |j| > 0, it holds that | {j| U; |0) |? ~ t2|ax;|?
e If H is indeed k-local, then ay; = 0 holds whenever |j| > k, and we find that
> 1l Ueloy P ~0,
J:lil>k
i.e., we make approximately no error
o Conversely, if H is e-far from any k-local Hamiltonian, then 3. .\ laxi|? > €2
e Thus, Zj:lj\>k | (j| Ut |0) |2 22
e Repeating O(t~272) times makes success probability constant
e To make the proof precise, we need to deal with higher order terms and
non-commutative Hamiltonians



Hardness of Hamiltonian learning w.r.t. normalized Frobenius norm

Theorem

Any (even coherent) quantum algorithm with a constant number of auxiliary qubits
that, when given time evolution access to an arbitrary n-qubit Hamiltonian H,
promised to satisfy tr[H] = 0 and ||H||, < 1, with success probability > 2/3, outputs
(the classical description of) a Hamiltonian H such that \/LT"HH - A H2 < ¢ has to

make at least Q (22") many queries to H.
Any non-adaptive incoherent quantum algorithm achieving the same without auxiliary
qubits has to use a total evolution time of at least Q (2?2")
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0 o 3 = 2n
e We want to prove that learning w.r.t. the norm. Frobenius norm is hard (Q(z?) total

evolution time).

e Strategy: Identify a distinguishing problem (probabilistic argument) that any
successful general Hamiltonian learner can solve

e Lower bounds for that distinguishing task through information-theoretic arguments

e Construct M = exp(§2(4")) unitaries U, such that the Hamiltonians H, = EUXOU)]:

5, O =diag(+1,...,+1,-1,...,-1)

e Fano's inequality: mutual information lower bound Z(X : Y) > Q(log M) > Q(4"),
where X ~ Uniform([M]) and Y outcomes observed by the learner

are pairwise e-far apart w.r.t. \/%H]

e Remaining work: Upper bounds on Z(X : Y); uses Weingarten calculus
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Additional results and open questions

Some things which did not make it into the talk:

e We can actually test any property, i.e., whether H has only terms in some subset
S C P, oris at least e-far from it. If S is too big, we need ancillas

e We can actually test M properties at the same time with only log M overhead

e We can also do tolerant property testing (checking whether H is e1-close to having S
of at least ep-far from any such Hamiltonian, for €1 < &)

Some open questions:

e Are our bounds optimal? Is the scaling N = O(¢~*) necessary?
e \What about other distance measures, such as Wasserstein distances?

e What about other access models, e.g., learning from Gibbs states?
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We have considered the task of locality testing, i.e., testing whether a Hamiltonian is
k-local or e-far from any such Hamiltonian

We have found a setting in which learning is hard, but in which we can give an
efficient algorithm for locality testing, thereby separating the two tasks

For more details, see

arXiv:2403.02968
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