Unified framework for continuity of sandwiched Rényi
divergences

Andreas Bluhm — Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Based on arXiv:2308.12425, joint work with Angela Capel, Paul Gondolf, and Tim Mdbus

Granada, May 9, 2024



e Well-known continuity bound: Alicki-Fannes-Winter

|Hy(AIB) — Hy(A|B)| < 2¢log da + (1 + g)h(

€

1+ 5) '
with %Hp —o|l; <e <1 and h the binary entropy

e More generally: Give bounds on

sup{|f(p) = (o) : p,o € So,d(p,0) < ¢}

for some entropic quantities f

e Especially useful if you know the value of the entropic quantity for some states, but
not for others.

Aim: Find methods that give good continuity bounds for as many entropic
quantities as possible




Sandwiched Rényi entropies

e This talk: entropic quantities derived from sandwiched Rényi entropies
~ 1 ~ 1 la l-a
Da(pllo) i= —— log(Qu(plle)) = —— logtr (o = po5)°]

a—1 a—1
where ae € [1/2,1) U (1,00). Limit @ — 1 yields relative entropy.

e Examples of such quantities:

’chx(A‘B)p:: sup  —Du(pagllla ® 78)
TBES(HB)
and
T(A:B),= inf D,
a( ) TAeg”(HA)’ (paB||Ta ® TB)
TBGS(HB)



Previous results

e We were inspired by two previous works for I?Il(A|B)p:
e Marwah and Dupuis [MD22]:

‘HT A|B), — H.(A|B)s (1+e)+7 Iog(l +e*d207) ﬁ) o€ [1/2,1)
N _ N 2
AL(AIB), — HL(A|B), (1+ x/Z) A Iog(l + V2 d20P) (1+\/¢2:65)1ﬂ) a € (1,00)

where 3 is such that a1 + 871 =2
e Beigi and Goodarzi [BG23|:

‘/—/T AlB), — HI(A|B),

(1 +2ed?® )
where o/ = a/(a — 1)

e From these, we build three approaches: almost additive, operator space, and mixed
approach



Almost additive approach: Ingredients

e This approach builds on the ideas in [MD22]
e Uses properties of Qu(pllo) = tr{(al:z;aapolz;aa)“}:

1. (p,o) = Qa(pllo) is jointly concave for a € [1/2,1) and jointly convex for a € (1, 0).
2. Let X;, Y be positive operators with suitable supports. For « € (0, 1)

Qu(X1 + X2||Y) < Qu(X1]|Y) + Qu(Xa|Y)
and for a € (1,00)
Qu(Xa]|Y) + Qu(Xa|lY) < Qu(X1 + Xa| V).

e We can convert these properties into continuity bounds for
5&/@ :S(H) — R, p 5@,6(0) = Tlréié 5a(p||7)

when C C S(#H) is compact, convex set containing at least one positive definite state



Almost additive approach: Result

Theorem (Distance to a compact, convex set)

Let C C S(H) be a compact, convex set that contains at least one positive definite
state. For p, o € S(H) with ||p —o||; < e, a € [1/2,1) and k such that

sup 5a,c(p) < log(k) < oo we get
PES(H)

1 e
[ 1 a, l-a
1—a0g( ten (1+€)1—")

Further for o € (1,00) and k such that sup 50470(,0) < log(k) < oo
PES(H)

1 lo 1—1—65"_1—L
a—1"°8 1+ee1)

|Da.c(p) — Dac(0)] < log(1 + &) +

|Dac(p) — Dac(0)| < log(1 +€) +



Operator space approach: Ingredients (1/2)

e This approach builds on the ideas in [BG23]

Definition (The C, p, g norm)

Let C C B>o(#) be a compact, convex set containing at least one positive definite

1. 1 .
state. Thenfor 1 <p<g<oo, ;= — 7 we define

1
P

1 1
e pq  BH) = [0,00), X = [Xllg.pq = s:g‘ % Xc
C

p

e Usually, C is a subalgebra of B(#), but we consider compact convex subsets of 5(7)
consisting of positive semidefinite operators containing at least one full-rank state

e For1 <q <p' < oo such that%zi—%,deﬁne

. _1 _1
5 o BOH) = [0,00), X =5 X[ o = ce'c’?f>oHC 3 X%

/

p
e Not clear that this is a norm



Operator space approach: Ingredients (2/2)

e We prove (without interpolation theory) that the dual quantity is subadditive on
positive semi-definite elements, i.e.,

||X + Y”Z,p’,q’ < ”XHZ,p’,q’ + ”Y”Z,p’,q’

for X, Y € Bzo(%).
e [ntermediate steps:
1. Holder inequality: [tr[XY]| < [IX|l¢ , IV ll¢.pr o
2. For X € B(H), we find

sup [ XY = 1 Xlle p.q
YEBH), [ Y]13 .y <1

3. For X >0, we find

sup ‘tr[XY” = ‘|X‘|Z,p’,q’
YeEB>o(H), Yl o<1



Operator space approach: Result

Theorem (Distance to convex, compact set)

Let C C S(H) be a compact, convex set that contains at least one positive definite
state. For p, 0 € S(H) with %Hp —oll; <&, a€[1/2,1) and k such that

sup Dac(p) < log(k) < oo,
pES(H)

~ ~ 1 Y
Dac(p) = Dac(o)l < log (1 + e“K1 7).

—

Further for a € (1,00) and k such that sup 5,1,5(,0) < log(k) < oo we have
pES(H)

_ _ . o
Dac(p) = Dac(o)| < —— log(1+en"% ).

(07



Mixed approach: Result

e The mixed approach combines ideas from both previous ones

Theorem (Distance to convex, compact set)

Let C C S(H) be a compact, convex set that contains at least one positive definite
state. For p, o € S(H) satisfying %||p — o||; < & and k such that

sup 5a’c(p) < log(k) < oo we find
pES(H)

a o1 52(1(1—1
log{1+ex @ — — |
a—1 (1+¢e) =

1Dac(p) = Dac(0)| < log(1+¢) +



Example: Sandwiched Rényi conditional entropy

Corollary

Let p,o € S(Ha® Hg), with 3||p — o|| <&, then for a € [1/2,1)

1 2(1—a) €
| 14 e _ -
— og( +e%d, (1+€)1_a>,

|HL(AIB), — HI(AB), | < log(1 +¢) + 1

which is the bound from [MD22], and for o € (1, oo)

log(1+¢)+ 5 Iog(l + sdz(a 2 #) :

;1
|HL(AIB), — HL(AB)s| < min ﬁ'og(HedA “ )

a1 1
Iog(l-l—s)-l—%log(l-l—edj“ — —= Z’_l)
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Proof sketch

C={d,"1a®0og : og € S(Hg)} is a convex and compact set

Contains the maximally mixed state as positive definite state

We can rewrite ﬁg(A|B)p =— ~a7c(p) + log da

Verify that sup,cs(y) 5a,c(P) < 2log da, this gives xk = d2

Now we can apply our previous theorems

12



Example: First entry of divergence

Corollary (Continuity bound in the first argument)

Let p, o, 7 € S(H) be quantum states, with ker T C ker p N ker o, %Hp —oll; <€ and
a € [1/2,1). Then

- ~ 1
|Da(pll7) — Dal(o||7)| < log(1+¢) + = |0g(1 +erme! m) ;

where m is the smallest non-zero eigenvalue of T. For o € (1,00) we find
Iog(1+€)+ |og(1+5m1 @ ﬁ) :
1-a
1Ba(pllr) = Daloll7)] < min{ 221 Iog(l + ey ) :

1
log(1+¢) + =% Iog(l + amT - E—Z_I) .

The proof is a straightforward consequence of our theorems.
13



Example: Sandwiched Rényi mutual information

Corollary

Let p,o € S(Ha® Hp) with 3|p— o, <e. Then, for a € [1/2,1) we find
(A B)y = Ia(A: B)o]

1
1 1 ca
<2lo <1-|-6E>-|- lo 1-|-5O‘m2(1_°‘)_— :
= 11—« g< (1+ 85)2(1—a)

and for o € (1,00) we have

la(A: B)y — la(A: B)o|

L 1 1 2(a—1) e*
§2Iog(1+5a>+ log( 14+ eam -,
a—1 1+ 5;)2(04—1)

where in both bounds m = min{da, dg}.

Not straightforward, because we optimize in two arguments. However, the ideas from

. ) 14
the almost additive method still work.



Approach a—1 o — 00
A. additive | 2slogda + (1 +¢)h(755) log(1 +¢)+2logda
Conditional )
Entropy (5.1) Op. space 0 log(l + E(JA)
Mixed 2elogda+ (1+e)h(5z) | log(l+edy +e(l+e(d) —1)))
Mutual - 2
Tnfo. (5.2) A. additive | 2elogm + 2(1 + 5)h(1+€) log 4m
A. additive | elog(m;') + (14 ¢)h (1+e) log(1 + &) + log ()
1%t Entry of .
Divergence (5.4) Op. space o0 log(1+em; ')
Mixed elog(m; ') + (14 2)h(15) log(l 6% e(l1+ 5(— - 1)))
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Comparison of the

approaches
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A comparison of the continuity bounds for
H,(A|B), proven by the Bl almost additive,
, and Il mixed approach.

Every approach performs best in

some regime.
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Interlude: Quantum Markov states

e Quantum Markov state: p such that /(A: C|B), =0
e Equivalent to recovery condition

1/2 —-1/2 —-1/2 1/2
PABC = pB/CpB / PABPB / pB/C (1)

e Can define sandwiched Rényi conditional mutual information as

I1(A: C|B), := HL(C|B), — Hl(C|AB),

e Turns out that IJ(A: C|B), for a € (1/2,1) U (1,00) if and only if Eq. (1) holds
(Jentova [Jenl7], Gao and Wilde [GW21])

Can we lower bound the distance from being recoverable by the sandwiched Rényi
CMI using continuity bounds?

17



a-approximate quantum Markov chains

Theorem

Let pagc € S(Ha® Hp @ Hc) be positive definite. Given o € (1/2,1)U (1, 00), pasc
is an a-approximate quantum Markov chain if, and only if, it is close to its (rotated,
universal) Petz recovery. More specifically, we have for o € (1/2,1)

——
a Iog<1+<lC )15 )

<Ia(A: C|B),
1/2 —1/2 ~1/2 1/2”1/2

<c (a, |Pazcllo " de, dABC) HPABC — PBCPB PABPB ' PBC

T+t — —1—it L+it
PABC — PaB PB PBCPB PAB

for any e € (0,1 — ), with K = K(e, ) and similar results for o € (1, 00).

The lower bounds follow from previous work by Gao and Wilde [GW21]
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Proof sketch

e Bound I[(A: C|B), — IL(A: C|B),, where o is a quantum Markov state
e Problem: IJ(A: C|B) is not of the form Ea’c(p)

e Have to resort to a different proof technique, based on the proof of the
Alicki-Fannes-Winter bound [Win16], later extended by Shirokov [Shi20] and by AB,
Capel, Gondolf, and Pérez-Herndndez [BCG+23|

e ALAFF method in [BCG+23] needs almost concavity/almost convexity of

(p,0) = Qulpllo)

e You could also use the ALAFF method for the quantities we have considered so far,
but the bounds from the other three methods are better

19



Open questions

Is X = [|X]|¢ .4 @ nOrm?

How tight are these bounds?

Can we find an approach that outperforms all our three approaches?

Can these continuity bounds be extended to infinite dimensions?

e What about other divergences? (work in progress)

20
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