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Introduction
Compatibility of quantum
measurements:
» Measurement = POVM
» Compatible if marginals of
common measurement

» Only incompatible
measurements can violate
Bell inequalities

» Noise robustness
quantifies incompatibility

mm

Inclusion of free spectrahedra:

» Convex optimization

» Free spectrahedron =
relaxation of linear matrix
inequalities (dual SDPs)

» Inclusion constants
quantify error

Aim of this talk: Connecting the two problems
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Compatibility: Two binary measurements Tim

Consider two binary measurements: {E,/ — E}, {F,/ — F}.
Assume that there is a measurement {R,-J},{j:o such that

Roo + HRon = E
+ +

R1 0 + Fl’1’1 = |-E
I I
F I-F

Then the measurements are jointly measurable or compatible.

» For concrete measurements, this can be checked using an
SDP.
» There is an equivalent definition via classical post
processing.
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The compatibility region

» Measurements can be made compatible by adding a
sufficient amount of noise

» White noise:
1-s

E— sE+ Iy

» Compatibility region:

1—S,‘
2

M(g.d):={s 0,19 s+

Iy are compatible

VE1,...,Ege[0,/d]}

» Incompatibility is a resource for quantum information
processing
> Noise robustness can be used to quantify incompatibility

» Lower bounds on I'(g, d) through approximate cloning
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An easy example

Example

As I'(g, d) is convex, it holds <1§, .

52

1
I'(2,d)

S1
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,15) el(g,d)vd eN

r(g,d) = {se [0,1]9 :

1
SiEi+ —— l are comp.

2
VE1,...,Ege[O,/d]}



Free spectrahedra Tum

Let A c (M3?)9. The free spectrahedron at level nis defined as

g
DA(I’]) = { Xe (Mf,a)g : ZA,‘@)(,‘ < lnd } .
i=1

The free spectrahedron is the union of these levels

Dy = U DA(n).

neN

Different free spectrahedra can usually have the same first level
Da(1).
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The matrix diamond TUT

An important example is the matrix diamond:

g
DO’Q(”):{XG (M7 ) "X < In Ve € { —1,+1 }g}.

i=1
Example
For g =2:
1
1
A1 = 1 )
—1
1
—1
A = 1
—1
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Inclusion of free spectrahedra Tim
» Dp C Dg means Da(n) C Dg(n) for all n

Lemma’

Let Ac (MF)9, B € (MFH)9. Furthermore, let D4(1) be
bounded. The unital linear map ¢ : span{/, Ay, ..., Ag} — M3,

b A — B; VIG[g]
is n-positive if and only if D4(n) C Dg(n).

> DA(1) - DB(1) — 5-DyCDgforse [O, 1]g
> Inclusion set: A(g,d) := {s € 0,19 : VB € (M)
Deg(1) C D(1) = s Dog C D }

1J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and
beta distributions. Memoirs of the AMS, 275(1232), 2019.
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Connecting the two problems Tim

Theorem
Let E € (M32)9 and let 2E — | := (2Ey — lg,...,2E5 — Iy). We
have
1. Do g(1) € Doe_ (1) ifand only if Ey, ..., Eg are POVM
elements.

2. Dog C Dop_yifandonly if Eq, ..., Eg are jointly
measurable POVM elements.

3. Dy g(k) € Doe_ (k) for k € [d] if and only if for any
isometry V : Ck — C9, the induced compressions
V*EqV,..., V*E4V are jointly measurable POVM
elements.

Theorem
It holds that T (g,d) = A(g, d).
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Proof ideas: Tum

D, g(1) € Dag_y(1) ifand only if £y, ..., Eg are POVM
elements.

» Consider the extreme points +e; of the matrix diamond.

Do.g C Doe_yifandonly if E4, ..., Eg4 are jointly measurable
POVM elements.

» Inclusion holds if and only if the unital map
o 20 @ diag[—1,1] @ L9 = 2E, — I,

is completely positive
> Arveson’s extension theorem: ¢ has a positive extension ®
to C%
» Basis g, of C¥: G, := ®(g,) is a joint POVM for £, ..., Eg
if and only if ® positive
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Points in the inclusion set TUT

It holds that I'(g, d) = A(g, d).

» Davidson et al.?: Point independent of d

;(1,...,1)6A(g,d)

> Helton et al.3: Point independent of g

"
@(1,...,1)6A(g,d)

2K. R. Davidson et al. Dilations, inclusions of matrix convex sets, and completely
positive maps. Int. Math. Res. Notices, 2017(13):4069-4130, 2017.
3J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and

beta distributions. Memoirs of the AMS, 275(1232), 2019.
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Upper and lower bounds for the matrix diamond 4 TLTI

Theorem

Let g, d € N. Then, it holds that QC, C A(g, d). In other words,
for any g-tuple E4, ..., Eq of POVM elements and any positive
vector s € RS with ||s||2 < 1, the g-tuple of noisy POVM
elements Ej = s;E; + (1 — s;)ly/2 is jointly measurable.

Theorem
Letg > 2, d > 2[(9=1/21 Then, A(g,d) C QC,.

QCy:={se[0,1]9:s5+. .. +s5<1}

4B. Passer et al. Minimal and maximal matrix convex sets. J. Funct. Anal. ,
274:3197-3253, 2018.
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Maximally incompatible measurements Tum

We can construct POVM elements which achieve the upper
bound:
FED — oy o FO vie 2k +1]

i
Fé:i;) =0y ® bk, Fz(:i;) =07 ® bk.

k=1:F" oy, Y =5y, F{" = o
k=2:

F1(2):UX®UXa F2(2):Ux®0'y, F§2)20X®0'Z,

Fégz):(fy@/g, F5(2):0‘2®Ig
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What we know about (g, d) m

‘ |
1QC, =T
QC CcT — 2[(.‘7_1)/2-‘
g =
— \/3/2
L ——qc,cr

)

» In the green area, the upper and lower bound from Passer
et al. coincide

» In the orange area, we know that the point 1/(2d)(1,...,1)
is no longer in QC,

» Lower bounds better than symmetric cloning
> Attention: QC, shrinks with g
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Outlook: More outcomes

The matrix diamond is the universal for binary measurements,

which object do we consider for more outcomes?

>

>
>
| 4
2

v

Line with endpoints +1 is a simplex S in one dimension
'DQ’2(1) =535

Measurements with k-outcomes: Sx_1

Level 1: Sg, 1 & ... D Sk, 1

Matrix diamond is the maximal free spectrahedron sitting
on the /4-ball

Taking the maximal free spectrahedron for k-outcomes
leads to the matrix jewel

Connection carries over to the general setting

Similar inclusion problems can be found for the
compatibility of quantum channels and compatibility in
GPTs (ongoing)
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Conclusion Tum

» Compatibility of binary POVMs corresponds to inclusion of
the matrix diamond into a free spectrahedron defined by
the POVM elements

» Compatibility region = Inclusion set of the matrix diamond

> T(g,d) = QC, for dimension d exponential in the number
of measurements g
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