
Compatibility of quantum measurements and
inclusion constants for free spectrahedra

Andreas Bluhm

with Ion Nechita

Technical University of Munich
Department of Mathematics

Madrid, May 15, 2019

Andreas Bluhm (TUM) | Compatibility and free spectrahedra 1



Introduction
Compatibility of quantum
measurements:
▶ Measurement = POVM
▶ Compatible if marginals of

common measurement
▶ Only incompatible

measurements can violate
Bell inequalities

▶ Noise robustness
quantifies incompatibility

Inclusion of free spectrahedra:

▶ Convex optimization
▶ Free spectrahedron =

relaxation of linear matrix
inequalities (dual SDPs)

▶ Inclusion constants
quantify error

Aim of this talk: Connecting the two problems
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Compatibility: Two binary measurements

Example

Consider two binary measurements: {E , I − E}, {F , I − F}.
Assume that there is a measurement {Ri,j}1

i,j=0 such that

R0,0 + R0,1 = E
+ +

R1,0 + R1,1 = I − E
= =

F I − F

Then the measurements are jointly measurable or compatible.

▶ For concrete measurements, this can be checked using an
SDP.

▶ There is an equivalent definition via classical post
processing.
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The compatibility region
▶ Measurements can be made compatible by adding a

sufficient amount of noise
▶ White noise:

E 7→ sE +
1 − s

2
Id

▶ Compatibility region:

Γ(g,d) :=
{

s ∈ [0,1]g : siEi +
1 − si

2
Id are compatible

∀E1, . . . ,Eg ∈ [0, Id ]
}

▶ Incompatibility is a resource for quantum information
processing

▶ Noise robustness can be used to quantify incompatibility
▶ Lower bounds on Γ(g,d) through approximate cloning
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An easy example

Example

As Γ(g,d) is convex, it holds
(

1
g , . . . ,

1
g

)
∈ Γ(g,d) ∀d ∈ N

Γ(g,d) :=
{

s ∈ [0,1]g :

siEi +
1 − si

2
I are comp.

∀E1, . . . ,Eg ∈ [0, Id ]
}
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Free spectrahedra
Let A ∈ (Msa

d )g . The free spectrahedron at level n is defined as

DA(n) :=

{
X ∈

(
Msa

n
)g

:

g∑
i=1

Ai ⊗ Xi ≤ Ind

}
.

The free spectrahedron is the union of these levels

DA :=
⋃
n∈N

DA(n).

Different free spectrahedra can usually have the same first level
DA(1).
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The matrix diamond
An important example is the matrix diamond:

D⋄,g(n) =

{
X ∈

(
Msa

n
)g

:

g∑
i=1

ϵiXi ≤ In ∀ϵ ∈ { −1,+1 }g

}
.

Example

For g = 2:

A1 =


1

1
−1

−1

 ,

A2 =


1

−1
1

−1


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Inclusion of free spectrahedra
▶ DA ⊆ DB means DA(n) ⊆ DB(n) for all n

Lemma1

Let A ∈ (Msa
D )g , B ∈ (Msa

d )g . Furthermore, let DA(1) be
bounded. The unital linear map Φ : span{I,A1, . . . ,Ag} → Msa

d ,

Φ : Ai 7→ Bi ∀i ∈ [g]

is n-positive if and only if DA(n) ⊆ DB(n).

▶ DA(1) ⊆ DB(1) =⇒ s · DA ⊆ DB for s ∈ [0,1]g .

▶ Inclusion set: ∆(g,d) :=
{

s ∈ [0,1]g : ∀B ∈
(
Msa

d

)g

D⋄,g(1) ⊆ DB(1) ⇒ s · D⋄,g ⊆ DB

}
1J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and

beta distributions. Memoirs of the AMS, 275(1232), 2019.
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Connecting the two problems

Theorem
Let E ∈

(
Msa

d

)g and let 2E − I := (2E1 − Id , . . . ,2Eg − Id). We
have

1. D⋄,g(1) ⊆ D2E−I(1) if and only if E1, . . . ,Eg are POVM
elements.

2. D⋄,g ⊆ D2E−I if and only if E1, . . . ,Eg are jointly
measurable POVM elements.

3. D⋄,g(k) ⊆ D2E−I(k) for k ∈ [d ] if and only if for any
isometry V : Ck ↪→ Cd , the induced compressions
V ∗E1V , . . . ,V ∗EgV are jointly measurable POVM
elements.

Theorem
It holds that Γ(g,d) = ∆(g,d).
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Proof ideas:

D⋄,g(1) ⊆ D2E−I(1) if and only if E1, . . . ,Eg are POVM
elements.

▶ Consider the extreme points ±ei of the matrix diamond.

D⋄,g ⊆ D2E−I if and only if E1, . . . ,Eg are jointly measurable
POVM elements.

▶ Inclusion holds if and only if the unital map

Φ : I⊗(i−1)
2 ⊗ diag[−1,1]⊗ I⊗(g−i)

2 7→ 2Ei − Id

is completely positive
▶ Arveson’s extension theorem: Φ has a positive extension Φ̃

to C2g

▶ Basis gη of C2g
: Gη := Φ̃(gη) is a joint POVM for E1, . . . ,Eg

if and only if Φ̃ positive
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Points in the inclusion set

It holds that Γ(g,d) = ∆(g,d).

▶ Davidson et al.2: Point independent of d

1
g
(1, . . . ,1) ∈ ∆(g,d)

▶ Helton et al.3: Point independent of g

1
2d

(1, . . . ,1) ∈ ∆(g,d)

2K. R. Davidson et al. Dilations, inclusions of matrix convex sets, and completely
positive maps. Int. Math. Res. Notices, 2017(13):4069–4130, 2017.

3J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and
beta distributions. Memoirs of the AMS, 275(1232), 2019.
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Upper and lower bounds for the matrix diamond 4

Theorem
Let g, d ∈ N. Then, it holds that QCg ⊆ ∆(g,d). In other words,
for any g-tuple E1, . . . ,Eg of POVM elements and any positive
vector s ∈ Rg

+ with ∥s∥2 ≤ 1, the g-tuple of noisy POVM
elements E ′

i = siEi + (1 − si)Id/2 is jointly measurable.

Theorem
Let g ≥ 2, d ≥ 2⌈(g−1)/2⌉. Then, ∆(g,d) ⊆ QCg .

QCg := {s ∈ [0,1]g : s2
1 + . . .+ s2

g ≤ 1}

4B. Passer et al. Minimal and maximal matrix convex sets. J. Funct. Anal. ,
274:3197–3253, 2018.
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Maximally incompatible measurements
We can construct POVM elements which achieve the upper
bound:

F (k+1)
i = σX ⊗ F (k)

i ∀i ∈ [2k + 1]

F (k+1)
2k+2 = σY ⊗ I2k , F (k+1)

2k+3 = σZ ⊗ I2k .

Example

k = 1: F (1)
1 = σX , F (1)

2 = σY , F (1)
3 = σZ

k = 2:

F (2)
1 = σX ⊗ σX , F (2)

2 = σX ⊗ σY , F (2)
3 = σX ⊗ σZ ,

F (2)
4 = σY ⊗ I2, F (2)

5 = σZ ⊗ I2
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What we know about Γ(g,d)
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▶ In the green area, the upper and lower bound from Passer
et al. coincide

▶ In the orange area, we know that the point 1/(2d)(1, . . . ,1)
is no longer in QCg

▶ Lower bounds better than symmetric cloning
▶ Attention: QCg shrinks with g
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Outlook: More outcomes
The matrix diamond is the universal for binary measurements,
which object do we consider for more outcomes?
▶ Line with endpoints ±1 is a simplex S1 in one dimension
▶ D⋄,2(1) = S1 ⊕ S1

▶ Measurements with k -outcomes: Sk−1

▶ Level 1: Sk1−1 ⊕ . . .⊕ Skg−1

▶ Matrix diamond is the maximal free spectrahedron sitting
on the ℓ1-ball

▶ Taking the maximal free spectrahedron for k -outcomes
leads to the matrix jewel

▶ Connection carries over to the general setting
▶ Similar inclusion problems can be found for the

compatibility of quantum channels and compatibility in
GPTs (ongoing)
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Conclusion
▶ Compatibility of binary POVMs corresponds to inclusion of

the matrix diamond into a free spectrahedron defined by
the POVM elements

▶ Compatibility region = Inclusion set of the matrix diamond
▶ Γ(g,d) = QCg for dimension d exponential in the number

of measurements g
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