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Measurement compatibility



Quantum states and measurements

� Motivation: Classical state ⇝ probability distributions: p ∈ Rd , p ≥ 0,
∑

i pi = 1.

� Quantum states ⇝ density matrices: ρ ∈ Md(C), ρ ≥ 0, Tr ρ = 1.

� Measurement outcomes are labeled {1, . . . , k}, need to be assigned probabilities.

� Measurements: Tuples of matrices (E1, . . . ,Ek) such that (Tr[E1ρ], . . . ,Tr[Ekρ]) is a
probability distribution for all states ρ.

� Tr[Eiρ] ∈ R ⇝ Ei = E∗
i .

� Tr[Eiρ] ≥ 0 ⇝ Ei ≥ 0.

�

∑
i Tr[Eiρ] = 1 ⇝

∑
i Ei = Id .

� Tuples of PSD matrices summing to identity are called positive operator-valued

measures (POVMs).
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Quantum measurements: Compatibility

� Quantum measurements ⇝ give the probabilities of the classical outcomes when a

quantum state enters a measurement apparatus. Mathematically, measurements are

modeled by POVMs.

Definition

Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl), are called compatible if there

exists a third POVM C = (Cij)i∈[k],j∈[l ] such that

∀i ∈ [k], Ai =
l∑

j=1

Cij and ∀j ∈ [l ], Bj =
k∑

i=1

Cij .

The definition generalizes to g -tuples of POVMs A(1), . . . ,A(g), having respectively

k1, . . . kg outcomes, where the joint POVM C has outcome set [k1]× · · · × [kg ].

� Other way to say that: jointly measurable.
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What does it mean?

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1 · · · kg
· · ·

� Compatible measurements can be simulated by a single joint measurement, by

classically post-processing its outputs A
(j)
i =

∑
λ pj(i |λ)Cλ.

� Examples:
1. Trivial POVMs A = (pi Id) and B = (qj Id) are compatible.

2. Commuting POVMs [Ai ,Bj ] = 0 are compatible.

3. If the POVM A is projective, then A and B are compatible if and only if they commute.
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Noisy POVMs

� POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.

� Example: dichotomic POVMs and white noise, s ∈ [0, 1]:

(E , I − E ) 7→ s(E , I − E ) + (1− s)(
I

2
,
I

2
) or E 7→ sE + (1− s)

I

2
.

� Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ⇝

define Cij := (Ai + Bj)/4.

� From now on, we focus on dichotomic (YES/NO) POVMs.

Definition

The compatibility region for g measurements on Cd is the set

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}
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Compatibility region

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}

� The set Γ(g , d) is convex.

� For all i ∈ [g ], ei ∈ Γ(g , d): every measurement is

compatible with g − 1 trivial measurements.

� For d ≥ 2, (1, 1, . . . , 1) /∈ Γ(g , d): there exist

incompatible measurements.

� For all d ≥ 2, Γ(2, d) is a quarter-circle.

Generally speaking, the set Γ(g , d) tells us how robust (to noise) is the incompatibility

of g dichotomic measurements on Cd .
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Free spectrahedra



Free spectrahedra

� A spectrahedron is given by PSD constraints: for

A = (A1, . . . ,Ag ) ∈ (Msa
d (C))g

DA(1) :=

{
x ∈ Rg :

g∑
i=1

xiAi ≤ Id

}

� D(σX ,σY ,σZ )(1) = {(x , y , z) ∈ R3 : xσX + yσY + zσZ ≤ I2} = Bloch ball

� A free spectrahedron is the matricization of a spectrahedron

DA :=
∞⊔
n=1

DA(n) with DA(n) :=

{
X ∈ (Msa

n (C))g :

g∑
i=1

Xi ⊗ Ai ≤ Ind

}
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Example: the matrix diamond

The matrix diamond is the free spectrahedron defined by

D♢,g :=
∞⊔
n=1

{X ∈ (Msa
n (C))g :

g∑
i=1

ϵiXi ≤ In, ∀ϵ ∈ {±1}g}

� At level one, D♢,g (1) is the unit ball of the ℓ1 norm on Rg

� As a free spectrahedron, it is defined by 2g × 2g diagonal matrices D♢,g = DL1,...,Lg ,

with Li = I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2
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Spectrahedral inclusion

� Consider two free spectrahedra defined by (A1, . . . ,Ag ) and (B1, . . . ,Bg )

� We write DA ⊆ DB if, for all n ≥ 1, DA(n) ⊆ DB(n)

� Clearly, DA ⊆ DB =⇒ DA(1) ⊆ DB(1). For the converse implication to hold, one

may need to shrink DA...

Definition

For a free spectrahedron DA, we define its set of inclusion constants as

∆A(g , d) := {s ∈ [0, 1]g : for all g -tuples B1, . . . ,Bg ∈ Md(C)sa,

DA(1) ⊆ DB(1) =⇒ s.DA ⊆ DB}

� The inclusion constants for the matrix cube play an important role in combinatorial

optimization

� We shall be concerned with the inclusion set for the matrix diamond, which we

denote by ∆(g , d) 10



Connecting the two



Compatibility in QM ⇐⇒ matrix diamond inclusion

To a g -tuple E ∈ (Msa
d (C))g , we associate:

D2E−I :=
∞⊔
n=1

{X ∈ (Msa
n (C))g :

g∑
i=1

Xi ⊗ (2Ei − Id) ≤ Ind}

Theorem

Let E ∈ (Msa
d (C))g be g-tuple of selfadjoint matrices. Then:

� The matrices E are quantum effects ⇐⇒ D♢,g (1) ⊆ D2E−I (1)

� The matrices E are compatible quantum effects ⇐⇒ D♢,g ⊆ D2E−I

At the intermediate levels 1 ≤ n ≤ d, D♢,g (n) ⊆ D2E−I (n) iff for all isometries

V : Cn → Cd , the compressed effects V ∗EiV are compatible.

Moreover, the compatibility region is equal to the set of inclusion constants of the

matrix diamond: ∀g , d, Γ(g , d) = ∆(g , d).
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Consequences

Many things are known about the matrix diamond

� For all g , d , 1
2d (1, 1, . . . , 1) ∈ ∆(g , d) (Helton et al., 2019)

� For all g , d , QCg := {s ∈ [0, 1]g :
∑

i s
2
i ≤ 1} ⊆ ∆(g , d) (Passer et al., 2018)

Many things are known about (in-)compatibility

� Some small g , d cases completely solved

� Approximate quantum cloning =⇒ compatibility

Clone(g , d) := {s ∈ [0, 1]g :∃ quantum channel Φ : Md(C) → Md(C)⊗g s.t.

∀i ∈ [g ], Φi (X ) = siX + (1− si )
TrX

d
Id}

Theorem

For all g and d ≥ 2⌈(g−1)/2⌉, Γ(g , d) = ∆(g , d) = QCg 12



Phase diagram

Γ=QC

Γ⊇QC

Γ⊇QC, Γ≠QC

1 2 3 4 5 6 7 8 9 10
g

1

2

3

4

5

6

7

8

9
d

d=2⌈(g-1)/2⌉

d= g

2

� Connection to free spectrahedra also holds for arbitrary outcomes

� Instead of matrix diamond, consider its generalization, the matrix jewel

� We can get better lower bounds from the matrix cube (duality, can be seen as

steering) 13



Inclusion of spectrahedra and (completely) positive maps

Theorem (Helton et al., 2013)

Let A ∈ (Msa
D (C))g , B ∈ (Msa

d (C))g such that DA(1) is bounded. Then,

DA(n) ⊆ DB(n) iff the unital linear map

Φ : span{I ,A1, . . . ,Ag} → Msa
d (C), Ai 7→ Bi

is n-positive.

Sketch of the proof of the main theorem:

� Level 1: the extremal points of D♢,g (1) are ±ei

� The inclusion D♢,g ⊆ D2E−I holds iff the unital map

Φ : I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2 7→ 2Ei − Id is CP

� Arveson’s extension theorem: Φ has a (completely) positive extension Φ̃ to R2g

� Cf := Φ̃(f ) is a joint POVM for the Ei ’s, where {f } is a basis of R2g
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Polytope compatibility



Polytope compatibility

� We have seen that measurement compatibility can be reformulated as the inclusion of

a free spectrahedron corresponding to the ℓ1 unit ball.

� What happens if we replace this unit ball by some other polytope?

� Which quantum information problems can be described using these tools?
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Magic squares

A magic square is a collection of positive operators Aij , i , j ∈ [N], such that

A11 + A12 + . . . + A1N = I

+ + +
...

...
. . .

...
...

+ + +

AN1 + AN2 + . . . + ANN = I

|| || ||
I I · · · I

The magic square is said to be semiclassical if

A =
∑

i ,j∈[N]

|i⟩⟨j | ⊗ Aij =
∑
π∈SN

Pπ ⊗ Qπ,

where Pπ is the permutation matrix associated to π and {Qπ}π is a POVM. 16



Birkhoff polytope compatibility

Definition

For a given N ≥ 2, the Birkhoff body BN(1) is defined as the set of (N − 1)× (N − 1)

truncations of N × N bistochastic matrices, shifted by J/N:

BN = {A(N−1) − JN−1/N : A ∈ MN(R) bistochastic} ⊂ R(N−1)2 .

Theorem

Consider a (N − 1)2-tuple of selfadjoint matrices A ∈ Msa
d (C)(N−1)2 and a

corresponding matrix Ã ∈ MN(Md(C)). Then:

1. The matrix Ã is a magic square if and only if DB◦
N
(1) ⊆ DA−I/N(1) (the A− I/N

are BN -operators).

2. The matrix Ã is a semiclassical magic square if and only if DB◦
N
⊆ DA−I/N (the

A− I/N are BN -compatible).
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Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

1
2 |0⟩⟨0|

1
2 |1⟩⟨1| 0 1

2 I2
1
2 |1⟩⟨1|

1
2 |0⟩⟨0|

1
2 I2 0

0 1
2 I2

1
2 |+⟩⟨+| 1

2 |−⟩⟨−|
1
2 I2 0 1

2 |−⟩⟨−| 1
2 |+⟩⟨+|

These measurements are compatible, but they do not form a semiclassical magic

square.

Reason: BN -compatibility restricts the post-processing to pi (j |λ) = pj(i |λ), i.e.,
enforces special structure in the joint POVM.
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Measurement compatibility with shared effects

Can we generalize the magic square example?

P = (−1/3,−1/3,−1/3) + conv{((1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

Consider (A,B,C ) ∈ (Msa
d (C))3. Then, we have

(A,B,C ) + 1/3(I , I , I ) are P-operators if and only if

both (A,B, Id − A− B) and (A,C , Id − A− C ) are

POVMs.
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Measurement compatibility with shared effects, continued

When does (A,B,C ) + 1/3(I , I , I ) P-compatible hold? Equivalent to the existence of

a joint measurement such that

Q1 0 0 = A

0 Q5 Q4 = B

0 Q3 Q2 = Id − A− B

= A = C = Id − A− C

Not all joint measurements are of this form, check(
1

2
I2,

1

2
|0⟩⟨0| , 1

2
|1⟩⟨1|

)
and

(
1

2
I2,

1

2
|+⟩⟨+| , 1

2
|−⟩⟨−|

)
.

P-compatibility for general polytopes P corresponds to measurement compatibility

with shared elements and restricted post-processing, according to a graph defined by P.
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Summary

� Measurement incompatibility can be phrased as inclusion of free spectrahedra. Base

set: diamond.

� Noise robustness corresponds to inclusion constants.

� Generalization: P-compatible operators.

� Examples include magic squares and compatibility with shared elements (under

restricted post-processing)
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