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Measurement compatibility



Quantum states and measurements

e Motivation: Classical state ~» probability distributions: p € R?, p > 0, >.ipi=1
e Quantum states ~~ density matrices: p € My4(C), p >0, Trp =1,
e Measurement outcomes are labeled {1,..., k}, need to be assigned probabilities.

e Measurements: Tuples of matrices (Ei, ..., Ex) such that (Tr[Eip], ..., Tr[Exp]) is a
probability distribution for all states p.
o Tr[Eip] € R ~ E; = E.
e Tr[Eip] >0~ E; >0.
o > Tr[Eipl=1~ > E =14
e Tuples of PSD matrices summing to identity are called positive operator-valued
measures (POVMs).



Quantum measurements: Compatibility

e Quantum measurements ~~ give the probabilities of the classical outcomes when a
quantum state enters a measurement apparatus. Mathematically, measurements are
modeled by POVMs.

Two POVMs, A = (A1, ..., Ax) and B = (By, ..., B)), are called compatible if there
exists a third POVM C = (Cj)i¢[x1.jep Such that

/ k
Vielkl, A=) G and  Vjell, Bi=)Y G
j=1 i=1

The definition generalizes to g-tuples of POVMs A1), ... A&) having respectively
ki, ... kg outcomes, where the joint POVM C has outcome set [ki] x - -- X [kg].

e Other way to say that: jointly measurable.



What does it mean?
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e Compatible measurements can be simulated by a single joint measurement, by
classically post-processing its outputs Af-'j) = >\ pi(iI|A)Ch.
e Examples:
1. Trivial POVMs A = (pily) and B = (qjly) are compatible.

2. Commuting POVMs [A;, Bj] = 0 are compatible.
3. If the POVM A is projective, then A and B are compatible if and only if they commute. B



Noisy POVMs

e POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.
e Example: dichotomic POVMs and white noise, s € [0, 1]:
I /
(E,I—E)r—>s(E,l—E)+(1—5)(§,§) or EH5E+(1—5)§.
e Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ~
define C,'j = (A,' + Bj)/4.
e From now on, we focus on dichotomic (YES/NO) POVMs.

The compatibility region for g measurements on C? is the set
M(g,d) :={s€[0,1]% : for all quantum effects Ei, ..., E € Mqy(C),

the noisy versions s;Ej + (1 — s;)l4/2 are compatible}



Compatibility region

M(g,d):={s€[0,1]¢ : for all quantum effects E;,..., E; € My4(C),

the noisy versions s;E; + (1 — s;)ly/2 are compatible}

52

e The set ['(g, d) is convex. 1

e Forall i €[g], e € T'(g,d): every measurement is
compatible with g — 1 trivial measurements.

e Ford>2,(1,1,...,1) ¢ I'(g,d): there exist
incompatible measurements.

I'(2,d)

e Forall d >2,T(2,d) is a quarter-circle. 51

1

Generally speaking, the set (g, d) tells us how robust (to noise) is the incompatibility
of g dichotomic measurements on C9.



Free spectrahedra




Free spectrahedra

e A spectrahedron is given by PSD constraints: for
A= (A1,...,A;) € (MHC))®

g
DA(]_) = {X e R¢ . ZX,‘A,‘ < Id}

i=1

® Dioyov,02)(1) ={(x,y,2) € R3 : xox + yoy + zoz < h} = Bloch ball

e A free spectrahedron is the matricization of a spectrahedron

Dy = El Da(n) with  Da(n) := {X e (MP(C))E Zg:Xi ® A < Ind}

=1l fi=il



Example: the matrix diamond

T2
1
The matrix diamond is the free spectrahedron defined by Den(l)
o0 g 3
Dog = | [{X € (MPC)E : Y X <1y, Vee{x1}} - Y
n=1 i=1
-1

o At level one, D (1) is the unit ball of the /1 norm on R

e As a free spectrahedron, it is defined by 28 x 28 diagonal matrices Dy, , = Dy, ... Lg
with Li=h® - Q@ h®diag(l,-1)®h®---® h



Spectrahedral inclusion

e Consider two free spectrahedra defined by (A1,...,Ag) and (B, ..., By)
e We write Da C Dg if, for all n > 1, Da(n) € Dg(n)
e Clearly, Do C Dg = Da(1l) C Dp(1). For the converse implication to hold, one
may need to shrink Daj...
For a free spectrahedron D4, we define its set of inclusion constants as
Aa(g,d) = {s€[0,1]8 :for all g-tuples By, ..., By € My(C)*?,
DA(l) C DB(l) = 5.Dy C DB}

e The inclusion constants for the matrix cube play an important role in combinatorial
optimization

e We shall be concerned with the inclusion set for the matrix diamond, which we
denote by A(g, d) 20



Connecting the two




Compatibility in QM <= matrix diamond inclusion

To a g-tuple E € (M%(C))&, we associate:
o g
Dop_) = |_|{X S (M:‘((C))g : ZX, X (2E, = ld) < /nd}

n=1 i=1
Theorem
Let E € (M3(C))8 be g-tuple of selfadjoint matrices. Then:

e The matrices E are quantum effects <= D¢, g(1) € Dap—(1)
e The matrices E are compatible quantum effects <= D¢, o € Dop_
At the intermediate levels 1 < n < d, D, g(n) € Dog—_(n) iff for all isometries
V :C" — CH9, the compressed effects VV*E;V are compatible.
Moreover, the compatibility region is equal to the set of inclusion constants of the
matrix diamond: Vg,d, ['(g.d) = Alg.d).
11



Consequences

Many things are known about the matrix diamond

e Forall g,d, 5(1,1,...,1) € A(g, d) (Helton et al., 2019)
e Forallg,d, QC,:={s€[0,1]¢ : 3 ;s? <1} C A(g,d) (Passer et al., 2018)

Many things are known about (in-)compatibility

e Some small g, d cases completely solved
e Approximate quantum cloning = compatibility

Clone(g, d) := {s € [0,1]% :3 quantum channel ® : M4(C) — M4(C)®? s.t.
Tr X
la}

Vi e [g], CD,'(X) =X+ (1 = S,') d

Theorem
For all g and d > 2[(e-1)/2] Mg,d)=A(g,d) = QC,



Phase diagram
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e Connection to free spectrahedra also holds for arbitrary outcomes
e Instead of matrix diamond, consider its generalization, the matrix jewel
e We can get better lower bounds from the matrix cube (duality, can be seen as

steering) 13



Inclusion of spectrahedra and (completely) positive maps

Theorem (Helton et al., 2013)

Let Ae (MF(C))8, B € (M (C))8 such that Da(1) is bounded. Then,
Da(n) € Dg(n) iff the unital linear map

& :span{l, A1,...,Ag} = MF(C), Ai— B

is n-positive.

Sketch of the proof of the main theorem:

o Level 1: the extremal points of Dq, 5(1) are Le;
e The inclusion Dy, o € Dye_ holds iff the unital map
¢ hR - @bh®dag(l,-1)®@h®- - ® h+ 2E; — Iy is CP
e Arveson's extension theorem: ® has a (completely) positive extension ® to R
o Cr:=®(f) is a joint POVM for the E;'s, where {f} is a basis of R?



Polytope compatibility




Polytope compatibility

e We have seen that measurement compatibility can be reformulated as the inclusion of
a free spectrahedron corresponding to the ¢; unit ball.

e What happens if we replace this unit ball by some other polytope?

e Which quantum information problems can be described using these tools?

15



A magic square is a collection of positive operators Aj;, i, j € [N], such that

Al + A o+ ..+ Ay =1
+ + 4+
+ + +
Aem A= Am dE oen A2 Ao =)
| | |

The magic square is said to be semiclassical if
A= liil®Aj= ) Pr®Qr,
ije[N] TESN

where P is the permutation matrix associated to m and {Qr}, is a POVM. 16



Birkhoff polytope compatibility

For a given N > 2, the Birkhoff body By(1) is defined as the set of (N —1) x (N — 1)
truncations of N x N bistochastic matrices, shifted by J/N:

By = {AN"Y — Jy_1/N : Ae Mp(R) bistochastic} C RIN-1)2

Theorem

Consider a (N — 1)2-tuple of selfadjoint matrices A € ./\/lj“((C)(N_l)2 and a
corresponding matrix A € My(M4(C)). Then:
1. The matrix A is a magic square if and only if Dz (1) € Da—yyn(1) (the A—1/N
are By-operators).

2. The matrix A is a semiclassical magic square if and only if Dgs € Da_y/n (the
A —I/N are By-compatible).



Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

3 10)0] | 3 |1X1] 0 b

5 11X1] | 5]0)0] 2h 0
0 3h | 31X+ | 31-X-
1 0 | 31=X=I | 3I+X+]

These measurements are compatible, but they do not form a semiclassical magic

square.

Reason: Bp-compatibility restricts the post-processing to p;(j|A) = p;(i|A), i.e.,

enforces special structure in the joint POVM.
18



Measurement compatibility with shared effects

Can we generalize the magic square example?

P = (~1/3,-1/3,-1/3) + conv{((1,0,0), (0,0,0), (0,0, 1), (0,1,0), (0, 1,1)}.

Consider (A, B, C) € (M3*(C))3. Then, we have
(A,B,C)+1/3(1,1,1) are P-operators if and only if
both (A, B, Iy — A— B) and (A, C, Iy — A— C) are
POVMs.

19



Measurement compatibility with shared effects, continued

When does (A, B, C) +1/3(/,1,1) P-compatible hold? Equivalent to the existence of
a joint measurement such that

1 0 0 =A

0 Qs Qs =

0 @3 @ =lg—A—-B
—A —C —l,—A—C

Not all joint measurements are of this form, check
1,1 1 1,1 1
—bh, = —[1X1 d —b, = —|=X-=1]].
(Gezloxolzmil) and (Ghg bkl 5 k1)

P-compatibility for general polytopes P corresponds to measurement compatibility
with shared elements and restricted post-processing, according to a graph defined by P.

20



e Measurement incompatibility can be phrased as inclusion of free spectrahedra. Base
set: diamond.

e Noise robustness corresponds to inclusion constants.
e Generalization: P-compatible operators.

e Examples include magic squares and compatibility with shared elements (under
restricted post-processing)

21
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