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Matrix convex sets



Matrix convex sets

We consider free sets:

F =
⊔
i∈N

Fi ,

where Fi ⊆ (Msa
i (C))g .

The free set F is matrix convex if it is closed under direct sums and unital completely

positive maps:

� (A1, . . . ,Ag ) ∈ Fi , (B1, . . . ,Bg ) ∈ Fj =⇒ (A1 ⊕ B1, . . . ,Ag ⊕ Bg ) ∈ Fi+j .

� (A1, . . . ,Ag ) ∈ Fi , Φ : Mi (C) → Mj(C) UCP =⇒ (Φ(A1), . . . ,Φ(Ag )) ∈ Fj

UCP maps Φ : Md(C) → Mm(C) are maps such that Φ⊗ idn is positive for all n ∈ N
and Φ(Id) = Im.

Alternatively, Φ(X ) =
∑

i K
∗
i XKi such that

∑
i K

∗
i Ki = Im, Ki ∈ Md ,m(C).
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Two different descriptions of polytopes

A polytope P can be described either in terms of extreme points or hyperplanes
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Minimal and maximal matrix convex sets

� Unless F1 is a simplex, there are arbitrarily many different matrix convex sets with the

same F1. However, there is a largest and a smallest such set:

� For a closed convex set C,

Wmax
n (C) :=

{
X ∈ (Msa

n (C))g :

g∑
i=1

ciXi ≤ αI ∀(α, c) supp. hyperplanes for C
}

� For a closed convex set C,

Wmin
n (C) :=

{∑
j

X = zj ⊗ Qj ∈ (Msa
n (C))g : zj ∈ C, Qj ≥ 0 ∀j ,

∑
j

Qj = In
}

� Observe Wmax
1 (C) = C = Wmin

1 (C). Wmax(C) quantizes hyperplanes, Wmin(C)
quantizes extreme points.
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Inclusion sets

Definition

Let d , g ∈ N and C ⊂ Rg closed convex. The inclusion set is defined as

∆C(d) :=
{
s ∈ [0, 1]g : s · Wmax

d (C) ⊆ Wmin
d (C)

}
.

If C is the ℓg∞ unit ball, we write ∆□(g , d).

Depending on the set C, sometimes bounds on the inclusion set are known.
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Measurement compatibility



Quantum states and measurements

� Motivation: Classical state ⇝ probability distributions: p ∈ Rd , p ≥ 0,
∑

i pi = 1.

� Quantum states ⇝ density matrices: ρ ∈ Md(C), ρ ≥ 0, Tr ρ = 1.

� Measurement outcomes are labeled {1, . . . , k}, need to be assigned probabilities.

� Measurements: Tuples of matrices (E1, . . . ,Ek) such that (Tr[E1ρ], . . . ,Tr[Ekρ]) is a
probability distribution for all states ρ.

� Tr[Eiρ] ∈ R ⇝ Ei = E∗
i .

� Tr[Eiρ] ≥ 0 ⇝ Ei ≥ 0.

�

∑
i Tr[Eiρ] = 1 ⇝

∑
i Ei = Id .

� Tuples of PSD matrices summing to identity are called positive operator-valued

measures (POVMs).
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Quantum measurements: Compatibility

� Quantum measurements ⇝ give the probabilities of the classical outcomes when a

quantum state enters a measurement apparatus. Mathematically, measurements are

modeled by POVMs.

Definition

Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl), are called compatible if there

exists a third POVM C = (Cij)i∈[k],j∈[l ] such that

∀i ∈ [k], Ai =
l∑

j=1

Cij and ∀j ∈ [l ], Bj =
k∑

i=1

Cij .

The definition generalizes to g -tuples of POVMs A(1), . . . ,A(g), having respectively

k1, . . . , kg outcomes, where the joint POVM C has outcome set [k1]× · · · × [kg ].

� Other way to say that: jointly measurable.
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What does it mean?

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1 · · · kg
· · ·

� Compatible measurements can be simulated by a single joint measurement, by

classically post-processing its outputs A
(j)
i =

∑
λ pj(i |λ)Cλ.

� Examples:
1. Trivial POVMs A = (pi Id) and B = (qj Id) are compatible.

2. Commuting POVMs [Ai ,Bj ] = 0 are compatible.

3. If the POVM A is projective, then A and B are compatible if and only if they commute.
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Noisy POVMs

� POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.

� Example: dichotomic POVMs and white noise, s ∈ [0, 1]:

(E , I − E ) 7→ s(E , I − E ) + (1− s)(
I

2
,
I

2
) or E 7→ sE + (1− s)

I

2
.

� Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ⇝

define Cij := (Ei + Fj)/4.

� From now on, we focus on dichotomic (YES/NO) POVMs.

Definition

The compatibility region for g measurements on Cd is the set

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}
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Compatibility region

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}

� The set Γ(g , d) is convex.

� For all i ∈ [g ], ei ∈ Γ(g , d): every measurement is

compatible with g − 1 trivial measurements.

� For d ≥ 2, (1, 1, . . . , 1) /∈ Γ(g , d): there exist

incompatible measurements.

� For all d ≥ 2, Γ(2, d) is a quarter-circle.

Generally speaking, the set Γ(g , d) tells us how robust (to noise) the incompatibility of

g dichotomic measurements on Cd is.
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Link measurement compatibility and

matrix convex sets

Joint work with Ion Nechita



Measurement compatibilty revisited

From now on, we concentrate on measurements with two outcomes and identify

E (i) = {Ei , I − Ei} with Ei .

Theorem

Let

A =

g∑
j=1

ej ⊗ (2Ej − I ).

Then,

1. A ∈ Wmax
d (B(ℓg∞)) if and only if {Ej}j∈[g ] is a collection of POVMs.

2. A ∈ Wmin
d (B(ℓg∞)) if and only if {Ej}j∈[g ] is a collection of compatible POVMs.
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Proof sketch

� Wmax
d (B(ℓg∞)) is given in terms of hyperplanes. Have to verify −I ≤ Ai = 2Ei − I ≤ I

=⇒ 0 ≤ Ei ≤ I .

� Reminder:

Wmin
n (B(ℓg∞)) :=

{
X =

∑
j

zj ⊗ Qj ∈ (Msa
n )g : zj ∈ C ∀j , Q POVM

}
.

� Going to extreme points:

2Ej − I =
∑

ϵ∈{±1}

ϵ(j)Qϵ.

� Using
∑

ϵQϵ = I :

Ej =
∑

ϵ∈{±1}

δϵ(j),1Qϵ.

� {Qϵ}ϵ is a joint POVM. 12



Inclusion sets and compatibility regions

Theorem

Let g, d ∈ N. Let s ∈ [0, 1]g . Then, {siEi + (1− si )I/2}i∈[g ] is a collection of

compatible POVMs for all POVMs {Ei}i∈[g ], if and only if s ∈ ∆□(g , d). An

equivalent way to phrase this is Γ(g , d) = ∆□(g , d).

� This follows from the computation

A′
i = 2(siEi + (1− si )I/2)− I = si (2Ei − I ) = siAi .

� So adding noise means scaling the tensor A and hence s · Wmax
d (B(ℓg∞)) is the set of

noisy measurements.

� Thus, s · A ∈ Wmin
d (B(ℓg∞)) means the noisy measurements are compatible.
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Phase diagram

Γ=QC

Γ⊇QC

Γ⊇QC, Γ≠QC

1 2 3 4 5 6 7 8 9 10
g

1

2

3

4

5

6

7

8

9
d

d=2⌈(g-1)/2⌉

min. d s.t. τ(d) ≤ 1

g

� QCg := {s ∈ [0, 1]g : ∥s∥2 ≤ 1}
� τ(d) behaves asymptotically as√

2/(πd)

� Builds on results by Passer et al,

involving anticommuting,

self-adjoint unitaries (blue)

� Uses also a generalization of

results by Ben-Tal and

Nemirovski (brown)
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Incompatibility witnesses

Joint work with Anna Jenčova and Ion Nechita



Witnesses as hyperplanes
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Effect and incompatibility witnesses

Using a connection to tensor norms on Banach spaces:

� Effect witnesses:

Ed :=
{
φ ∈ Rg ⊗Msa

d (C) :
g∑

i=1

∥φi∥1 ≤ 1
}

Tr[Aφ] ≤ 1 for all φ ∈ Ed if and only if 0 ≤ Ei ≤ I .

� Incompatibility witnesses:

Id :=
{
φ =

g∑
i=1

ei ⊗ φi : ∃ρ ∈ S(Cd) s.t. ρ−
∑
i

ϵiφi ≥ 0 ∀ϵ ∈ {±1}g
}

Tr[Aφ] ≤ 1 for all φ ∈ Id if and only if the Ei are compatible.

� It holds that

X ∈ Wmax
d (B(ℓg1 )) =⇒ (ρ1/2X1ρ

1/2, . . . , ρ1/2Xgρ
1/2) ∈ Id .

and all incompatibility witnesses arise in this way.
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Random constructions

Work in progress with Cécilia Lancien and Ion Nechita



Random POVMs and their properties

� Where is the link to free probability?

� So far, we always asked about worst case behavior, but what is with typical behavior?

=⇒ Random constructions

� Can construct random POVMs from applying random unital completely positive maps

to a basis

� Can study compatibility criteria such as the Jordan product criterion: if

EiFj + FjEi ≥ 0 ∀i , j ,

then E and F are compatible.

� For random POVMs, the Jordan product criterion performs better than others to

detect compatibility =⇒ check [5] for details
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Random projections are pretty incompatible

How far are random projections from being maximally incompatible?

� Pi , i ∈ [g ] be g iid Haar random projections of rank d/2, Ai = 2Pi − Id

� Consider tAi = 2P
(t)
i − I , where P

(t)
i = tPi + (1− t) I2 . How big can I choose t and

still be compatible? topt ≥ 1/
√
g .

� Ansatz: Witness Wi = sAi/d . Witness if there exists a quantum state ρ such that

ρ−
∑
i

ϵiWi ≥ 0 ∀ϵ ∈ {±1}g .

With ρ = I/d check
∑

i ϵiAi ≤ I/s

� Free probability:

µAi
−−−→
d→∞

1

2
(δ−1 + δ1)︸ ︷︷ ︸

b

, µ∑
i ϵiAi

−−−→
d→∞

b⊞g , max supp b⊞g = 2
√
g − 1

�

〈
sA
d , tA

〉
= stg =⇒ topt ≈ 2/

√
g . Not so far from maximally incompatible.

� More sophisticated studies ongoing 18



Polytope compatibility

Joint work with Ion Nechita and Simon Schmidt



Polytope compatibility

Definition

Let P be a polytope in Rg such that 0 ∈ intP. Let

A = (A1, . . . ,Ag ) ∈ Msa
d (C)g ∼= Rg ⊗Msa

d (C)

a g -tuple of Hermitian matrices. Then, A are P-operators if and only if A ∈ Wmax
d (P).

Moreover, A are P-compatible if and only if A ∈ Wmin
d (P).

Motivation:

� A are B(ℓg∞)-operators if and only if 1
2(Ai + I ) are dichotomic POVMs.

� A are B(ℓg∞)-compatible if and only if 1
2(Ai + I ) are compatible dichotomic POVMs.
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Magic squares

A magic square is a collection of positive operators Aij , i , j ∈ [N], such that

A11 + A12 + . . . + A1N = I

+ + +
...

...
. . .

...
...

+ + +

AN1 + AN2 + . . . + ANN = I

|| || ||
I I · · · I

The magic square is said to be semiclassical if

A =
∑

i ,j∈[N]

|i⟩⟨j | ⊗ Aij =
∑
π∈SN

Pπ ⊗ Qπ,

where Pπ is the permutation matrix associated to π and {Qπ}π is a POVM. 20



Birkhoff polytope compatibility

Definition

For a given N ≥ 2, the Birkhoff body BN(1) is defined as the set of (N − 1)× (N − 1)

truncations of N × N bistochastic matrices, shifted by J/N:

BN = {A(N−1) − JN−1/N : A ∈ MN(R) bistochastic} ⊂ R(N−1)2 .

Theorem

Consider a (N − 1)2-tuple of selfadjoint matrices A ∈ Msa
d (C)(N−1)2 and the

corresponding matrix Ã ∈ MN(Md(C)). Then:

1. The matrix Ã is a magic square if and only if A− I/N are BN -operators.

2. The matrix Ã is a semiclassical magic square if and only if A− I/N are

BN -compatible.
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Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

1
2 |0⟩⟨0|

1
2 |1⟩⟨1| 0 1

2 I2
1
2 |1⟩⟨1|

1
2 |0⟩⟨0|

1
2 I2 0

0 1
2 I2

1
2 |+⟩⟨+| 1

2 |−⟩⟨−|
1
2 I2 0 1

2 |−⟩⟨−| 1
2 |+⟩⟨+|

These measurements are compatible, but they do not form a semiclassical magic

square.

Reason: BN -compatibility restricts the post-processing to pi (j |λ) = pj(i |λ), i.e.,
enforces special structure in the joint POVM.
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Measurement compatibility with shared effects

Can we generalize the magic square example?

P = (−1/3,−1/3,−1/3) + conv{((1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

Consider (A,B,C ) ∈ (Md(C)sa)3. Then, we have

(A,B,C ) + 1/3(I , I , I ) ∈ Wmax
d (P) if and only if

both (A,B, Id − A− B) and (A,C , Id − A− C ) are

POVMs.
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Measurement compatibility with shared effects, continued

When does (A,B,C ) + 1/3(I , I , I ) ∈ Wmin
d (P) hold? Equivalent to the existence of a

joint measurement such that

Q1 0 0 = A

0 Q5 Q4 = B

0 Q3 Q2 = Id − A− B

= A = C = Id − A− C

Not all joint measurements are of this form, check(
1

2
I2,

1

2
|0⟩⟨0| , 1

2
|1⟩⟨1|

)
and

(
1

2
I2,

1

2
|+⟩⟨+| , 1

2
|−⟩⟨−|

)
.

P-compatibility for general polytopes P corresponds to measurement compatibility

with shared elements and restricted post-processing, according to a graph defined by P.
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Summary

� Measurement incompatibility can be phrased as inclusion of matrix convex sets. Base

set: cube.

� Noise robustness corresponds to inclusion constants.

� Incompatibility witnesses arise from a maximal matrix convex set. Base set: diamond.

� Can be combined with free probability to study incompatibility of random

measurements

� Generalization: P-operators and P-compatible operators.

� Examples include magic squares and compatibility with shared elements (under

restricted post-processing).
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