Quantum compression relative to a set of measurements

Andreas Bluhm

(with Michael M. Wolf and Lukas Rauber)

Technical University of Munich
Department of Mathematics
Smolenice, June 14, 2018

Measurements

Aim of this talk: Compression of Hilbert space dimension Measurement upon preparation $\rho \in \mathcal{S}\left(\mathbb{C}^{D}\right)$:

- Measurement outcomes $\left\{a_{i}\right\}_{i=1}^{k}$, probabilities $\left\{p_{i}\right\}_{i=1}^{k}$
- Effect operators:

$$
\mathcal{E}\left(\mathbb{C}^{D}\right)=\left\{E \in \mathcal{M}_{D}: 0 \leq E \leq \mathbb{1}\right\}
$$

- Associate with probability:

$$
p_{i}=\operatorname{Tr}\left(E_{i} \rho\right) \quad \forall i \in\{1, \ldots, k\}
$$

- Normalization:

$$
\mathbb{1}=\sum_{i=1}^{k} E_{i}
$$

From now on: Measurement = Set of effect operators

Setup

$\mathcal{M}_{D} \quad \mathcal{M}_{d} \otimes \mathbb{C}^{n} \quad \mathcal{M}_{D}$

- \mathcal{C}, \mathcal{D} completely positive trace preserving maps, $\mathcal{T}=\mathcal{D} \circ \mathcal{C}$
- Fixed set $\mathcal{O} \subset \mathcal{E}\left(\mathbb{C}^{D}\right)$ of effect operators
- Constraints:

$$
\operatorname{Tr}(\rho E)=\operatorname{Tr}(\mathcal{T}(\rho) E) \quad \forall E \in \mathcal{O}
$$

- Require this to hold for all $\rho \in \mathcal{S}\left(\mathbb{C}^{D}\right)$
- Aim: Find d as small as possible, n may be arbitrarily large
- This d is the compression dimension of \mathcal{O}

Stability of the compression dimension

Theorem

Let d be the compression dimension for \mathcal{O} and \mathcal{O} be compact. Then there is an $\epsilon>0$ such that for $d^{\prime}<d$ and for every CPTP maps $\mathcal{C}: \mathcal{M}_{D} \rightarrow \mathcal{M}_{d^{\prime}} \otimes \mathbb{C}^{n}, \mathcal{D}: \mathcal{M}_{d^{\prime}} \otimes \mathbb{C}^{n} \rightarrow \mathcal{M}_{D}, n \in \mathbb{N}$, there are $\rho \in \mathcal{S}\left(\mathbb{C}^{D}\right)$ and $E \in \mathcal{O}$ such that

$$
|\operatorname{Tr}(\rho E)-\operatorname{Tr}((\mathcal{D} \circ \mathcal{C})[\rho] E)| \geq \epsilon .
$$

Proof idea:

- Classical side information can be bounded, i.e. for every $\mathcal{T}=\mathcal{D} \circ \mathcal{C}$, there are $\mathcal{C}^{\prime}, \mathcal{D}^{\prime}$ with $n \leq D^{4}$ and $\mathcal{T}=\mathcal{D}^{\prime} \circ \mathcal{C}^{\prime}$.
- Then compactness argument

For the rest of the talk, we can restrict to the exact case.

Algebraic approach

Theorem (Lower/Upper bound compression dimension)

Let d be the compression dimension of \mathcal{O} and $\left\{D_{i}\right\}$ be the dimensions of the matrix algebras occuring in the representation of $\mathrm{C}^{*}(\mathcal{O}, \mathbb{1})$. Then it holds that

$$
\min _{i \in[s]} D_{i} \leq d \leq \max _{i \in[s]} D_{i}
$$

Examples

Example (Generic case)

Let $A, B \in \mathcal{M}_{D}^{\text {herm }}$ be generic. Then $\mathrm{C}^{*}(\{A, B\}) \simeq \mathcal{M}_{D}$ and $\mathcal{O}:=\{\mathbb{1}, A, B\}$ is incompressible $(d=D)$.

Example (Two bipartite von Neumann measurements)

Let $P, Q \in \mathcal{E}\left(\mathbb{C}^{D}\right)$ be two orthogonal projections. Then, $\mathcal{O}:=\{P, \mathbb{1}-P, Q, \mathbb{1}-Q\}$ has compression dimension at most 2.

The latter example breaks down for more projections.

Computing the dimension

What can we say if for $\mathrm{C}^{*}(\mathcal{O}) \simeq \bigoplus_{i=1}^{S} \mathcal{M}_{D_{i}}$ upper and lower bound do not match?

- Can phrase this as an interpolation problem: Check if there is a CP map $\Phi: \mathcal{M}_{D} \rightarrow \mathcal{M}_{D_{1}}$ such that

$$
E^{1}=\Phi\left(\left[\begin{array}{llll}
0 & & & \\
& E^{2} & & \\
& & \ddots & \\
& & & E^{s}
\end{array}\right]\right) \quad \forall E \in \mathcal{O} .
$$

- This can be checked using a semidefinite program ${ }^{1}$
- Repeat for every block from largest to smallest until interpolation map no longer exists

[^0]
Geometric approach

Irreducible factors:

$$
p(x, z)=\prod_{i=1}^{s} p_{i}^{n_{i}}
$$

Here, p_{i} is a polynomial of degree D_{i}.
Theorem (Geometric lower bounds)
Let $\mathcal{O} \subset \mathcal{E}\left(\mathbb{C}^{D}\right)$ and $E_{1}, E_{2} \in \operatorname{span}_{\mathbb{R}}\{\mathcal{O}, \mathbb{1}\}$. Further, let $p(x, z):=\operatorname{det}\left[x \mathbb{1}-E_{1}-z E_{2}\right]$. Then the smallest among the degrees of the irreducible factors of p is a lower bound on the compression dimension of \mathcal{O}. In particular, if p is irreducible over the reals, then \mathcal{O} is incompressible.

- Corollary: The same holds if we allow multiple copies $\rho^{\otimes m}$ instead of ρ as input for \mathcal{C}.
- This cannot be proved using the algebraic approach.

Proof techniques

Constraints:

$$
\operatorname{Tr}(\rho E)=\operatorname{Tr}(\mathcal{T}(\rho) E)=\operatorname{Tr}\left(\rho \mathcal{T}^{*}(E)\right) \quad \forall \rho \in \mathcal{S}\left(\mathbb{C}^{D}\right), \forall E \in \mathcal{O}
$$

Algebraic:

- Use result by Arveson ${ }^{2}$ about the fixed points of a unital completely positive map \mathcal{T}.
- If those algebraically generate \mathcal{M}_{D}, then $\mathcal{T}=\mathrm{id}$.

Geometric:

- Reduce problem to determining whether for $E_{1}, E_{2} \in \mathcal{O}$

$$
\left\|E_{1}+t E_{2}\right\|_{\infty}=\left\|\mathcal{D}^{*}\left(E_{1}\right)+t \mathcal{D}^{*}\left(E_{2}\right)\right\|_{\infty} \quad \forall t \in \mathbb{R}
$$

- Bézout's theorem: Not possible if E_{1}, E_{2} give rise to an irreducible characteristic polynomial

[^1]
Conclusion

- Generically no compression possible with respect to Hilbert space dimension
- Physical setups: Dimension of largest block achievable, dimension of smallest block lower bound
- Compression dimension can be checked algorithmically
- Algebraic argument stronger statement, geometric more widely applicable
Reference: A. Bluhm, L. Rauber and M. M. Wolf. Quantum compression relative to a set of measurements. Annales Henri Poincaré, 19(6):1891-1937, 2018.

[^0]: ${ }^{1}$ T. Heinosaari, M. A. Jivulescu, D. Reeb and M. M. Wolf. Extending quantum operations. Journal of Mathematical Physics, 53(10):102208, 2012.

[^1]: ${ }^{2}$ William Arveson: Subalgebras of C*-algebras II. Acta Mathematica, 128(1):271-308, 1972.

