

Compatibility of quantum measurements and inclusion constants for free spectrahedra

Andreas Bluhm

with Ion Nechita

Technical University of Munich Department of Mathematics

ICCOPT, August 5, 2019

Introduction

Compatibility of quantum measurements:

- Measurement = POVM
- Compatible if marginals of common measurement
- Only incompatible measurements can violate Bell inequalities
- Noise robustness quantifies incompatibility

Inclusion of free spectrahedra:

- Convex optimization
- Free spectrahedron = relaxation of linear matrix inequalities (dual SDPs)
- Inclusion constants quantify error

Aim of this talk: Connecting the two problems

Measurements

Quantum system described by a quantum state $\rho \in \mathcal{S}(\mathbb{C}^d)$,

$$\mathcal{S}(\mathbb{C}^d) := \{ \rho \in \mathcal{M}_d : \rho \geq 0, \operatorname{Tr}(\rho) = 1 \}.$$

Measurement:

- ▶ Measurement outcomes $\{a_i\}_{i=1}^m$, probabilities $\{p_i\}_{i=1}^m$
- Associate quantum state with probability:

$$p_i = \operatorname{Tr}(E_i \rho) \quad \forall i \in \{1, \ldots, m\}$$

► *E_i* are effect operators:

$$\mathcal{E}(\mathbb{C}^d) := \{ E \in \mathcal{M}_d : 0 \le E \le I_d \}$$

- ▶ Special case: Orthogonal projection $E^2 = E$
- Normalization:

$$I_d = \sum_{i=1}^m E_i$$

From now on: Measurement = Set of effect operators (POVM)

Compatibility: Two binary measurements

Example

Consider two binary measurements: $\{E, I - E\}$, $\{F, I - F\}$. Assume that there is a measurement $\{R_{i,j}\}_{i,j=0}^1$ such that

Then the measurements are jointly measurable or compatible.

- For concrete measurements, this can be checked using an SDP.
- There is an equivalent definition via classical post processing.

The compatibility region

- Measurements can be made compatible by adding a sufficient amount of noise.
- White noise:

$$E\mapsto sE+\frac{1-s}{2}I_d,\qquad s\in[0,1]$$

Compatibility region:

$$\Gamma(g,d) := \left\{ s \in [0,1]^g : \ s_i E_i + \frac{1-s_i}{2} I_d \text{ are compatible} \right.$$
 $\forall E_1, \dots, E_g \in \mathcal{E}(\mathbb{C}^d) \left. \right\}$

An easy example

Example

As $\Gamma(g,d)$ is convex, it holds $\left(\frac{1}{g},\ldots,\frac{1}{g}\right)\in\Gamma(g,d)\ orall d\in\mathbb{N}$

$$egin{aligned} \Gamma(g,d) &:= \Big\{ s \in [0,1]^g : \ s_i E_i + rac{1-s_i}{2} I_d ext{ are comp.} \ orall E_1, \dots, E_g \in \mathcal{E}(\mathbb{C}^d) \Big\}. \end{aligned}$$

Free spectrahedra

Let $A \in (M_d^{sa})^g$. The free spectrahedron at level n is defined as

$$\mathcal{D}_{A}(n) := \left\{ X \in \left(\mathcal{M}_{n}^{sa}\right)^{g} : \sum_{i=1}^{g} A_{i} \otimes X_{i} \leq I_{nd} \right\}.$$

The free spectrahedron is the union of these levels

$$\mathcal{D}_A := \bigcup_{n \in \mathbb{N}} \mathcal{D}_A(n).$$

The matrix diamond

An important example is the matrix diamond:

$$\mathcal{D}_{\diamond,g}(n) = \left\{ X \in \left(\mathcal{M}_n^{sa}\right)^g : \sum_{i=1}^g \epsilon_i X_i \leq I_n \ \forall \epsilon \in \{-1,+1\}^g \right\}.$$

Example

For g = 2:

$$A_1 = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & 1 & \\ & & & -1 \end{pmatrix}$$

n-positivity

- ▶ Let $\mathcal{L} \subseteq \mathcal{M}_D$ be a linear subspace such that $A \in \mathcal{L} \iff A^* \in \mathcal{L}$ and $I_D \in \mathcal{L}$.
- Let $\Phi: \mathcal{L} \to \mathcal{M}_d$ be a linear map.

Definition

We call Φ *n*-positive if $\Phi \otimes id_n : \mathcal{L} \otimes \mathcal{M}_n \to \mathcal{M}_d \otimes \mathcal{M}_n$ is positive. The map Φ is completely positive if it is *n*-positive for all $n \in \mathbb{N}$.

Complete positivity of Φ can be checked using an SDP¹.

¹T. Heinosaari, M. A. Jivulescu, D. Reeb and M. M. Wolf. Extending quantum operations. *Journal of Mathematical Physics*, *53*(10):102208, 2012.

Inclusion of free spectrahedra

▶ $\mathcal{D}_A \subseteq \mathcal{D}_B$ means $\mathcal{D}_A(n) \subseteq \mathcal{D}_B(n)$ for all $n \in \mathbb{N}$

Lemma²

Let $A \in (\mathcal{M}_{D}^{sa})^g$, $B \in (\mathcal{M}_{d}^{sa})^g$. Furthermore, let $\mathcal{D}_A(1)$ be bounded. The unital linear map $\Phi : \operatorname{span}\{I, A_1, \dots, A_g\} \to \mathcal{M}_d^{sa}$,

$$\Phi: A_i \mapsto B_i \quad \forall i \in [g]$$

is *n*-positive if and only if $\mathcal{D}_A(n) \subseteq \mathcal{D}_B(n)$.

- ▶ $\mathcal{D}_A(1) \subseteq \mathcal{D}_B(1) \implies s \cdot \mathcal{D}_A \subseteq \mathcal{D}_B$ for $s \in [0, 1]^g$.
- ▶ Inclusion set: $\Delta(g,d) := \left\{ s \in [0,1]^g : \forall B \in \left(\mathcal{M}_d^{sa}\right)^g \right.$ $\mathcal{D}_{\diamond,g}(1) \subseteq \mathcal{D}_B(1) \Rightarrow s \cdot \mathcal{D}_{\diamond,g} \subseteq \mathcal{D}_B \right\}$

²J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and beta distributions. *Memoirs of the AMS*, 275(1232), 2019.

Connecting the two problems

Theorem

Let $E \in (\mathcal{M}_d^{sa})^g$ and let $2E - I := (2E_1 - I_d, \dots, 2E_g - I_d)$. We have

- 1. $\mathcal{D}_{\diamond,g}(1) \subseteq \mathcal{D}_{2E-I}(1)$ if and only if E_1, \ldots, E_g are effect operators.
- 2. $\mathcal{D}_{\diamond,g} \subseteq \mathcal{D}_{2E-I}$ if and only if E_1, \ldots, E_g are jointly measurable effect operators.
- 3. $\mathcal{D}_{\diamond,g}(k) \subseteq \mathcal{D}_{2E-I}(k)$ for $k \in [d]$ if and only if for any isometry $V : \mathbb{C}^k \hookrightarrow \mathbb{C}^d$, the induced compressions V^*E_1V, \ldots, V^*E_gV are jointly measurable effect operators.

Theorem

It holds that $\Gamma(g, d) = \Delta(g, d)$.

Proof ideas:

 $\mathcal{D}_{\diamond,g}(1)\subseteq\mathcal{D}_{2E-I}(1)$ if and only if E_1,\ldots,E_g are effect operators.

▶ Consider the extreme points $\pm e_i$ of the matrix diamond.

 $\mathcal{D}_{\diamond,g} \subseteq \mathcal{D}_{2E-I}$ if and only if E_1, \dots, E_g are jointly measurable effect operators.

Inclusion holds if and only if the unital map

$$\Phi: I_2^{\otimes (i-1)} \otimes \operatorname{diag}[-1,1] \otimes I_2^{\otimes (g-i)} \mapsto 2E_i - I_d$$

is completely positive

- Arveson's extension theorem: Φ has a positive extension $\tilde{\Phi}$ to \mathbb{C}^{2^g}
- ▶ Basis g_{η} of \mathbb{C}^{2^g} : $G_{\eta} := \tilde{\Phi}(g_{\eta})$ is a joint POVM for E_1, \ldots, E_g if and only if $\tilde{\Phi}$ positive

What we know about $\Gamma(g, d)$

- ► Green: The upper and lower bound from Passer³ coincide.
- ▶ Orange: Helton⁴ shows $1/(2d)(1,...,1) \in \Gamma(g,d)$.

 2 B. Passer et al. Minimal and maximal matrix convex sets. *J. Funct. Anal.* , 274:3197–3253, 2018.

⁴J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and beta distributions. *Memoirs of the AMS*, 275(1232), 2019.

Conclusion

- Compatibility of binary POVMs corresponds to inclusion of the matrix diamond into a free spectrahedron defined by the effect operators
- Compatibility region = Inclusion set of the matrix diamond
- ho Γ(g, d) = QC_g for dimension d exponential in the number of measurements g

References:

- AB and Ion Nechita. Joint measurability of quantum effects and the matrix diamond. *Journal of Mathematical Physics*, 59(11):112202, 2018.
- AB and Ion Nechita. Compatibility of quantum measurements and inclusion constants for the matrix jewel. arXiv1809.04514, 2018.

Points in the inclusion set

It holds that $\Gamma(g, d) = \Delta(g, d)$.

▶ Davidson et al.⁵: Point independent of d

$$\frac{1}{g}(1,\ldots,1)\in\Delta(g,d)$$

► Helton et al.⁶: Point independent of g

$$\frac{1}{2d}(1,\ldots,1)\in\Delta(g,d)$$

²K. R. Davidson et al. Dilations, inclusions of matrix convex sets, and completely positive maps. *Int. Math. Res. Notices*, 2017(13):4069–4130, 2017.

⁶J. W. Helton et al. Dilations, linear matrix inequalities, the matrix cube problem and beta distributions. *arXiv:1412.1481*, 2014.

Upper and lower bounds for the matrix diamond ⁷

Theorem

Let $g, d \in \mathbb{N}$. Then, it holds that $QC_g \subseteq \Delta(g, d)$. In other words, for any g-tuple E_1, \ldots, E_q of effect operators and any positive vector $s \in \mathbb{R}^g_+$ with $||s||_2 \le 1$, the g-tuple of noisy effect operators $E'_i = s_i E_i + (1 - s_i) I_d / 2$ is jointly measurable.

Theorem

Let
$$g \geq 2$$
, $d \geq 2^{\lceil (g-1)/2 \rceil}$. Then, $\Delta(g,d) \subseteq QC_g$.

$$QC_g := \{s \in [0,1]^g : s_1^2 + \ldots + s_g^2 \le 1\}$$

⁴B. Passer et al. Minimal and maximal matrix convex sets. *J. Funct. Anal.*, 274:3197-3253, 2018.

Maximally incompatible measurements

We can construct effect operators which achieve the upper bound:

$$F_i^{(k+1)} = \sigma_X \otimes F_i^{(k)} \qquad \forall i \in [2k+1]$$
 $F_{2k+2}^{(k+1)} = \sigma_Y \otimes I_{2^k}, \qquad F_{2k+3}^{(k+1)} = \sigma_Z \otimes I_{2^k}.$

Example

$$k = 1$$
: $F_1^{(1)} = \sigma_X$, $F_2^{(1)} = \sigma_Y$, $F_3^{(1)} = \sigma_Z$
 $k = 2$:

$$F_1^{(2)} = \sigma_X \otimes \sigma_X, \qquad F_2^{(2)} = \sigma_X \otimes \sigma_Y, \qquad F_3^{(2)} = \sigma_X \otimes \sigma_Z,$$

$$F_4^{(2)} = \sigma_Y \otimes I_2, \qquad F_5^{(2)} = \sigma_Z \otimes I_2$$

Outlook: More outcomes

The matrix diamond is the universal for binary measurements, which object do we consider for more outcomes?

- Line with endpoints ± 1 is a simplex S_1 in one dimension
- $\triangleright \mathcal{D}_{\diamond,2}(1) = \mathcal{S}_1 \oplus \mathcal{S}_1$
- ▶ Measurements with k-outcomes: S_{k-1}
- ▶ Level 1: $S_{k_1-1} \oplus \ldots \oplus S_{k_q-1}$
- ▶ Matrix diamond is the maximal free spectrahedron sitting on the ℓ_1 -ball
- ► Taking the maximal free spectrahedron for *k*-outcomes leads to the matrix jewel
- Connection carries over to the general setting
- Similar inclusion problems can be found for the compatibility of quantum channels and compatibility in GPTs (ongoing)