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Measurement compatibility



Measurements

Measurement of a quantum system in state ρ:

� Measurement outcomes {ai}ki=1, probabilities {pi}ki=1

� Effect operators:

EffD := {E ∈ Md(C) : 0 ≤ E ≤ Id}

� Special case: Orthogonal projection E 2 = E

� Associate with probability:

pi = tr[Eiρ] ∀i ∈ [k]

� Normalization:

I =
k∑

i=1

Ei

Measurements give the probabilities of the classical outcomes when a quantum state

enters a measurement apparatus. Mathematically, they are modeled by POVMs.
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Quantum measurements: Compatibility

Definition

Two POVMs, A = (A1, . . . ,Ak) and B = (B1, . . . ,Bl), are called compatible if there

exists a third POVM C = (Cij)i∈[k],j∈[l ] such that

∀i ∈ [k], Ai =
l∑

j=1

Cij and ∀j ∈ [l ], Bj =
k∑

i=1

Cij .

The definition generalizes to g -tuples of POVMs A(1), . . . ,A(g), having respectively

k1, . . . kg outcomes, where the joint POVM C has outcome set [k1]× · · · × [kg ].

� Other way to say that: jointly measurable.

� Compatibility of measurements can be checked using a semidefinite program
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What does it mean?

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1

· · ·

1 2 k2

· · ·

1 2 kg

· · ·

1 2 k1 · · · kg
· · ·

� Examples:
1. Trivial POVMs A = (pi Id) and B = (qj Id) are compatible.

2. Commuting POVMs [Ai ,Bj ] = 0 are compatible.

3. If the POVM A is projective, then A and B are compatible if and only if they commute.

� Only incompatible measurements can show Bell inequality violations

� Incompatibility is hence a resource for quantum information processing
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Compatibility: Alternative definition

There is an alternative (equivalent) definition via post-processing1:

Lemma

Let E (j) ∈ (Msa
d (C))kj , j ∈ [g ], be a collection of POVMs. These POVMs are jointly

measurable if and only if there is some m ∈ N and a POVM M ∈ (Msa
d (C))m such that

E
(j)
i =

m∑
x=1

pj(i |x)Mx

for all i ∈ [kj ], j ∈ [g ] and some conditional probabilities pj(i |x).

Compatible measurements can be simulated by a single joint measurement, by

classically post-processing its outputs .
1T. Heinosaari et al. An invitation to quantum incompatibility. J. Phys. A, 49(12), 2016.

6



Noisy POVMs

� POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.

� Example: dichotomic POVMs and white noise, s ∈ [0, 1]:

(E , I − E ) 7→ s(E , I − E ) + (1− s)(
I

2
,
I

2
) or E 7→ sE + (1− s)

I

2
.

� Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible ⇝

define Cij := (Ei + Fj)/4.

� From now on, we focus on dichotomic (YES/NO) POVMs.

Definition

The compatibility region for g measurements on Cd is the set

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}
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Compatibility region

Γ(g , d) := {s ∈ [0, 1]g : for all quantum effects E1, . . . ,Eg ∈ Md(C),

the noisy versions siEi + (1− si )Id/2 are compatible}

� The set Γ(g , d) is convex.

� For all i ∈ [g ], ei ∈ Γ(g , d): every measurement is

compatible with g − 1 trivial measurements.

� For d ≥ 2, (1, 1, . . . , 1) /∈ Γ(g , d): there exist

incompatible measurements.

� For all d ≥ 2, Γ(2, d) is a quarter-circle.

Generally speaking, the set Γ(g , d) tells us how robust (to noise) is the incompatibility

of g dichotomic measurements on Cd .
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Free spectrahedra



Free spectrahedra

� A spectrahedron is given by PSD constraints: for

A = (A1, . . . ,Ag ) ∈ (Msa
d (C))g

DA(1) :=

{
x ∈ Rg :

g∑
i=1

xiAi ≤ Id

}

� D(σX ,σY ,σZ )(1) = {(x , y , z) ∈ R3 : xσX + yσY + zσZ ≤ I2} = Bloch ball

� A free spectrahedron is the matricization of a spectrahedron

DA :=
∞⊔
n=1

DA(n) with DA(n) :=

{
X ∈ (M sa

n (C))g :

g∑
i=1

Xi ⊗ Ai ≤ Ind

}
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Example: the matrix diamond

The matrix diamond is the free spectrahedron defined by

D♢,g :=
∞⊔
n=1

{X ∈ (Msa
n (C))g :

g∑
i=1

ϵiXi ≤ In, ∀ϵ ∈ {±1}g}

� At level one, D♢,g (1) is the unit ball of the ℓ1 norm on Rg

� As a free spectrahedron, it is defined by 2g × 2g diagonal matrices D♢,g = DL1,...,Lg ,

with Li = I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2
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Spectrahedral inclusion

� Consider two free spectrahedra defined by (A1, . . . ,Ag ) and (B1, . . . ,Bg )

� We write DA ⊆ DB if, for all n ≥ 1, DA(n) ⊆ DB(n)

� Clearly, DA ⊆ DB =⇒ DA(1) ⊆ DB(1). For the converse implication to hold, one

may need to shrink DA...

Definition

For a free spectrahedron DA, we define its set of inclusion constants as

∆A(g , d) := {s ∈ [0, 1]g : for all g -tuples B1, . . . ,Bg ∈ Md(C)sa,

DA(1) ⊆ DB(1) =⇒ s.DA ⊆ DB}

� We shall be concerned with the inclusion set for the matrix diamond, which we

denote by ∆(g , d)
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Spectrahedral inclusion continued

� The inclusion constants for the matrix cube play an important role in combinatorial

optimization

� There, one is interested in whether DA(1) ⊆ DB(1)

� However, that is an NP-hard problem

� On the other hand, DA ⊆ DB can be checked with a semidefinite program

� The latter is hence a matricial relaxation

� Inclusion constants quantify how good this relaxation is
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Linking measurement compatibility

and free spectrahedra



Compatibility in QM ⇐⇒ matrix diamond inclusion

To a g -tuple E ∈ (Msa
d (C))g , we associate:

D2E−I :=
∞⊔
n=1

{X ∈ (Msa
n (C))g :

g∑
i=1

Xi ⊗ (2Ei − Id) ≤ Ind}

Theorem

Let E ∈ (Msa
d (C))g be g -tuple of selfadjoint matrices. Then:

� The matrices E are quantum effects ⇐⇒ D♢,g (1) ⊆ D2E−I (1)

� The matrices E are compatible quantum effects ⇐⇒ D♢,g ⊆ D2E−I

At the intermediate levels 1 ≤ n ≤ d , D♢,g (n) ⊆ D2E−I (n) iff for all isometries

V : Cn → Cd , the compressed effects V ∗EiV are compatible.

Moreover, the compatibility region is equal to the set of inclusion constants of the

matrix diamond: ∀g , d , Γ(g , d) = ∆(g , d).
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Consequences

Many things are known about the matrix diamond:

� For all g , d , 1
2d (1, 1, . . . , 1) ∈ ∆(g , d) (Helton et al., 2019)2

� For all g , d , QCg := {s ∈ [0, 1]g :
∑

i s
2
i ≤ 1} ⊆ ∆(g , d) (Passer et al., 2018)3

Theorem

For all g and d ≥ 2⌈(g−1)/2⌉, Γ(g , d) = ∆(g , d) = QCg

2J. W. Helton, I. Klep, S. A. McCullough, M. Schweighofer: Dilations, linear matrix inequalities, the

matrix cube problem and beta distributions. Mem. Amer. Math. Soc. 257 vol. 1232, 2019
3B. Passer, O. Shalit, B. Solel: Minimal and maximal matrix convex sets. J. Funct. Anal. 274(11),

2018
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More consequences

Many things are known about (in-)compatibility:

� Some small g , d cases completely solved

� Approximate quantum cloning =⇒ compatibility

Clone(g , d) := {s ∈ [0, 1]g :∃ quantum channel Φ : Md(C) → Md(C)⊗g s.t.

∀i ∈ [g ], Φi (X ) = siX + (1− si )
TrX

d
Id}
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Phase diagram

Γ=QC

Γ⊇QC

Γ⊇QC, Γ≠QC

1 2 3 4 5 6 7 8 9 10
g

1

2

3

4

5

6

7

8

9
d

d=2⌈(g-1)/2⌉

d= g

2

� Connection to free spectrahedra also holds for arbitrary outcomes

� Instead of matrix diamond, consider its generalization, the matrix jewel

� Similar ideas can be used in general probabilistic theories

� We can get a better lower curve later 16



Inclusion of spectrahedra and (completely) positive maps

Theorem (Helton et al., 2013)

Let A ∈ (Msa
D (C))g , B ∈ (Msa

d (C))g such that DA(1) is bounded. Then,

DA(n) ⊆ DB(n) iff the unital linear map

Φ : span{I ,A1, . . . ,Ag} → Msa
d (C), Ai 7→ Bi

is n-positive.

Sketch of the proof of the main theorem:

� Level 1: the extremal points of D♢,g (1) are ±ei

� The inclusion D♢,g ⊆ D2E−I holds iff the unital map

Φ : I2 ⊗ · · · ⊗ I2 ⊗ diag(1,−1)⊗ I2 ⊗ · · · ⊗ I2 7→ 2Ei − Id is CP

� Arveson’s extension theorem: Φ has a (completely) positive extension Φ̃ to R2g

� Cf := Φ̃(f ) is a joint POVM for the Ei ’s, where {f } is a basis of R2g
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Maximally incompatible quantum effects

Lemma (Newman 1932, Hrubeš 2016)

For d = 2k , there exist 2k + 1 anti-commuting, self-adjoint, unitary matrices

F1, . . . ,F2k+1 ∈ Ud . Moreover, 2k is the smallest dimension where such a

(2k + 1)-tuple exists.

� For k = 0, take F
(0)
1 := [1]

� For k ≥ 1, define F
(k+1)
i = σX ⊗ F

(k)
i ∀i ∈ [2k + 1] and F

(k+1)
2k+2 = σY ⊗ I2k ,

F
(k+1)
2k+3 = σZ ⊗ I2k

� These matrices satisfy, for all x ∈ Rg
+,

∥∥∑g
i=1 xiFi

∥∥
∞ = ∥x∥2, and∥∥∑g

i=1 xi F̄i ⊗ Fi
∥∥
∞ = ∥x∥1

� For d large enough, the maximally incompatible g -tuple of quantum effects in

Md(C) is given by Ei = (Fi + Id)/2

18



Matrix convex sets



Matrix convex sets

We consider free sets:

F =
⊔
i∈N

Fi ,

where Fi ⊆ (Msa
i (C))g .

The free set F is matrix convex if it is closed under direct sums and unital completely

positive maps:

� (A1, . . . ,Ag ) ∈ Fi , (B1, . . . ,Bg ) ∈ Fj =⇒ (A1 ⊕ B1, . . . ,Ag ⊕ Bg ) ∈ Fi+j .

� (A1, . . . ,Ag ) ∈ Fi , Φ : Mi (C) → Mj(C) UCP =⇒ (Φ(A1), . . . ,Φ(Ag )) ∈ Fj

Free spectrahedra are special cases of matrix convex sets
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Minimal and maximal matrix convex sets

� Unless F1 is a simplex, there are arbitrarily many different matrix convex sets with the

same F1. However, there is a largest and a smallest such set:

� For a closed convex set C,

Wmax
n (C) :=

{
X ∈ (Msa

n (C))g :

g∑
i=1

ciXi ≤ αI ∀(α, c) supp. hyperplanes for C
}

� For a closed convex set C,

Wmin
n (C) :=

{
X =

∑
j

zj ⊗ Qj ∈ (Msa
n (C))g : zj ∈ C, Qj ≥ 0 ∀j ,

∑
j

Qj = In
}

� Observe Wmax
1 (C) = C = Wmin

1 (C). Wmax(C) quantizes hyperplanes, Wmin(C)
quantizes extreme points.

� The matrix diamond is a maximal matrix convex set, D⋄,g = Wmax(B(ℓg1 ))
20



Inclusion sets

Definition

Let d , g ∈ N and C ⊂ Rg closed convex. The inclusion set is defined as

∆C(d) :=
{
s ∈ [0, 1]g : s · Wmax

d (C) ⊆ Wmin
d (C)

}
.

If C is the ℓg∞ unit ball, we write ∆□(g , d).

Depending on the set C, sometimes bounds on the inclusion set are known.
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Linking measurement compatibility

and matrix convex sets



Measurement compatibilty revisited

From now on, we concentrate on measurements with two outcomes and identify

E (i) = {Ei , I − Ei} with Ei .

Theorem

Let

A =

g∑
j=1

ej ⊗ (2Ej − I ).

Then,

1. A ∈ Wmax
d (B(ℓg∞)) if and only if {Ej}j∈[g ] is a collection of POVMs.

2. A ∈ Wmin
d (B(ℓg∞)) if and only if {Ej}j∈[g ] is a collection of compatible POVMs.
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Proof sketch

� Wmax
d (B(ℓg∞)) is given in terms of hyperplanes. Have to verify −I ≤ Ai = 2Ei − I ≤ I

=⇒ 0 ≤ Ei ≤ I .

� Reminder:

Wmin
n (B(ℓg∞)) :=

{
X =

∑
j

zj ⊗ Qj ∈ (Msa
n (C))g : zj ∈ C ∀j , Q POVM

}
.

� Going to extreme points:

2Ej − I =
∑

ϵ∈{±1}g
ϵ(j)Qϵ.

� Using
∑

ϵQϵ = I :

Ej =
∑

ϵ∈{±1}g
δϵ(j),1Qϵ.

� {Qϵ}ϵ is a joint POVM. 23



Inclusion sets and compatibility regions

Theorem

Let g , d ∈ N. Let s ∈ [0, 1]g . Then, {siEi + (1− si )I/2}i∈[g ] is a collection of

compatible POVMs for all POVMs {Ei}i∈[g ], if and only if s ∈ ∆□(g , d). An

equivalent way to phrase this is Γ(g , d) = ∆□(g , d).

� This follows from the computation

A′
i = 2(siEi + (1− si )I/2)− I = si (2Ei − I ) = siAi .

� So adding noise means scaling the tensor A and hence s · Wmax
d (B(ℓg∞)) is the set of

noisy measurements.

� Thus, s · A ∈ Wmin
d (B(ℓg∞)) means the noisy measurements are compatible.
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g-independent bounds

Theorem

The largest s such that s(1, . . . , 1) ∈ ∆□(g , d) for all g ∈ N is

τ(d) = 4−n

(
2n

n

)
, with n := ⌊d/2⌋.

Asymptotically, this behaves as
√
2/(πd).

� It is possible to show that this is asymptotically optimal, based on ϵ-nets of U(d).
� Based on the ideas in Helton et al., which in turn were inspired by Ben-Tal and

Nemirovski
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Improved phase diagram

Σ=QC

Σ⊇QC

Σ⊇QC, Σ≠QC

1 2 3 4 5 6 7 8 9 10
g

1

2

3

4
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6

7

8

9
d

d=2⌈(g-1)/2⌉

min. d s.t. τ(d) ≤ 1

g

This improves over the lower curve shown earlier.
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Polytope compatibility



Polytope compatibility

Definition

Let P be a polytope in Rg such that 0 ∈ intP. Let

A = (A1, . . . ,Ag ) ∈ Msa
d (C)g ∼= Rg ⊗Msa

d (C)

a g -tuple of Hermitian matrices. Then, A are P-operators if and only if A ∈ Wmax
d (P).

Moreover, A are P-compatible if and only if A ∈ Wmin
d (P).

Motivation:

� A are B(ℓg∞)-operators if and only if 1
2(Ai + I ) are dichotomic POVMs.

� A are B(ℓg∞)-compatible if and only if 1
2(Ai + I ) are compatible dichotomic POVMs.
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Magic squares

A magic square is a collection of positive operators Aij , i , j ∈ [N], such that

A11 + A12 + . . . + A1N = I

+ + +
...

...
. . .

...
...

+ + +

AN1 + AN2 + . . . + ANN = I

|| || ||
I I · · · I

The magic square is said to be semiclassical if

A =
∑

i ,j∈[N]

|i⟩⟨j | ⊗ Aij =
∑
π∈SN

Pπ ⊗ Qπ,

where Pπ is the permutation matrix associated to π and {Qπ}π is a POVM. 28



Birkhoff polytope compatibility

Definition

For a given N ≥ 2, the Birkhoff body BN(1) is defined as the set of (N − 1)× (N − 1)

truncations of N × N bistochastic matrices, shifted by J/N:

BN = {A(N−1) − JN−1/N : A ∈ MN(R) bistochastic} ⊂ R(N−1)2 .

Theorem

Consider a (N − 1)2-tuple of selfadjoint matrices A ∈ Msa
d (C)(N−1)2 and the

corresponding matrix Ã ∈ MN(Md(C)). Then:

1. The matrix Ã is a magic square if and only if A− I/N are BN -operators.

2. The matrix Ã is a semiclassical magic square if and only if A− I/N are

BN -compatible.
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Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

1
2 |0⟩⟨0|

1
2 |1⟩⟨1| 0 1

2 I2
1
2 |1⟩⟨1|

1
2 |0⟩⟨0|

1
2 I2 0

0 1
2 I2

1
2 |+⟩⟨+| 1

2 |−⟩⟨−|
1
2 I2 0 1

2 |−⟩⟨−| 1
2 |+⟩⟨+|

These measurements are compatible, but they do not form a semiclassical magic

square.

Reason: BN -compatibility restricts the post-processing to pi (j |λ) = pj(i |λ), i.e.,
enforces special structure in the joint POVM.
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Measurement compatibility with shared effects

Can we generalize the magic square example?

P = (−1/3,−1/3,−1/3) + conv{((1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

Consider (A,B,C ) ∈ (Md(C)sa)3. Then, we have

(A,B,C ) + 1/3(I , I , I ) ∈ Wmax
d (P) if and only if

both (A,B, Id − A− B) and (A,C , Id − A− C ) are

POVMs.
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Measurement compatibility with shared effects, continued

When does (A,B,C ) + 1/3(I , I , I ) ∈ Wmin
d (P) hold? Equivalent to the existence of a

joint measurement such that

Q1 0 0 = A

0 Q5 Q4 = B

0 Q3 Q2 = Id − A− B

= A = C = Id − A− C

Not all joint measurements are of this form, check(
1

2
I2,

1

2
|0⟩⟨0| , 1

2
|1⟩⟨1|

)
and

(
1

2
I2,

1

2
|+⟩⟨+| , 1

2
|−⟩⟨−|

)
.

As we will see now, polytope compatibility can always be seen as measurement

compatibility with shared effects and restricted post-processing.
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Probability hypergraphs

Definition

A hypergraph G (with no isolated vertices) is called a probability hypergraph if there

exists a function π : V → (0, 1] such that

∀e ∈ E ,
∑
v∈e

π(v) = 1. (1)

We denote by Π(G ) the set of all functions π : V → [0, 1] such that Eq. (1) holds.

1 2

3 4

1
2

4

3

5

1
2

3
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Polytopes from probability hypergraphs

We associate to a probability hypergraph G a polytope in an essentially unique manner:

Π0(G ) := {π : V → R : ∀e ∈ E ,
∑
v∈e

π(v) = 0}.

Set g := dimΠ0(G ).

Let π∗ ∈ Π(G ) and consider a basis π1, . . . , πg of Π0(G ). Define the set

P := {a ∈ Rg : π∗ +

g∑
x=1

axπx ∈ Π(G )},

which depends on the choice of the functions π∗, π1, . . . , πg . This is a polytope.

A result of Shultz shows that all polytopes with rational coefficients can be obtained in

this way.4

4F. W. Shultz: A characterization of state spaces of orthomodular lattices. Journal of Combinatorial

Theory, Series A, 17(3), 1974. 34



Polytope compatibility: the general case

Theorem

Let G = (V ,E ) be a probability hypergraph with associated polytope P. Consider a

tuple of P-operators (Bx)x∈[g ] ⊆ Msa
d (C), d ∈ N and define

∀v ∈ V , Av := π∗(v)Id +
∑
x∈[g ]

πx(v)Bx ∈ Msa
d (C).

Consider also the POVMs Â·|e = (Av )v∈e indexed by the hyperedges of G . TFAE:

1. The (Bx)x∈[g ] are P-compatible.

2. The POVMs Â·|e are compatible and there is single POVM C = (Cλ)λ∈Λ s.t.

∀e ∈ E , ∀v ∈ e, Âv |e = Av =
∑
λ∈Λ

p(v |e, λ)Cλ

using a post-processing p respecting the symmetry of G :

∀e, f ∈ E , ∀v ∈ e ∩ f , ∀λ ∈ Λ, p(v |e, λ) = p(v |f , λ). 35



Summary

� Measurement incompatibility can be phrased as inclusion of free spectrahedra. Base

set: diamond.

� Alternatively, measurement incompatibility can be phrased in terms of minimal and

maximal matrix convex sets. Base set: cube.

� In both cases, noise robustness corresponds to inclusion constants.

� Generalization: P-compatible operators.

� Examples include magic squares and compatibility with shared elements (under

restricted post-processing).

� Polytope compatibility is in one-to-one correspondence to measurement compatibility

with shared effects and restricted post-processing.
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