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Introduction

Why do you trust the clerk behind the counter at the bank?
Answer: Because of her location!

Position-based cryptography: Use position as credential

Primitive: Secure (quantum) position verification



The classical situation



Classical protocols
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Classical attacks

e |s this protocol secure?

e No, collaborating
attackers can break this

protocol
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Why could going quantum help?

Key step: Alice and Bob have to copy their bitstrings x and y

No-cloning theorem: Quantum information cannot be copied perfectly

e On the downside, quantum attackers are more powerful as well

In particular, they can use entanglement for quantum teleportation

Unconditional security impossible, but we want to prove that attackers need a lot of

entanglement



Simple quantum protocols



Qubit routing protocol
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Security of qubit routing

Theorem[ ]

Let n > 10. Let us assume that the verifiers choose the bit strings x, y of length n
uniformly at random. Then there exists a function f : {0,1}2" — {0,1} with the
property that, if the number g of qubits each of the attackers controls satisfies

1
<>n—5
q<5n=5,

the attackers are caught with probability at least 2 - 1072. Moreover, a uniformly
random function 7 will have this property (except with exponentially small probability).

e Develops further prove method in [BFSS13]

e Success probability of the attackers can be suppressed exponentially by sequential
repetition



Measuring protocol

e Protocol resembles
Vo Vi [BKll]

i @ Y e {01} J € {0,1)7 e Verifiers prepare Q
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apply Hadamard gate if
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Pros and cons

e The protocol in [BK11] uses n-qubits, whereas we use a single qubit and a Boolean

function on 2n bits

e Using an entropic uncertainty relation and modifying the proof slightly, we can prove

the same security as for the routing protocol
e The routing protocol is simpler for the prover because there is no need to measure

e Security proof for the measuring protocol still holds if quantum information travels

slowly

e Fits current technology better (qubits transmitted using fiber optics)
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Concrete functions

Binary inner product function
n
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Theorem

Let n > 10. Let us assume that the verifiers choose the bit strings x, y of length n
uniformly at random. If the number g of qubits each of the attackers controls satisfies

1
qS§|Ogn_57

the attackers are caught during the routing and measuring protocols with probability at
least 2 - 1072, respectively.

e Proof based on communication complexity



Dealing with photon loss




Noise robust measuring protocol

e Hitherto, we assumed that the honest prover succeeds perfectly

e Now, we only assume that she succeeds with probability at least 0.99

e Repeat the protocol independently r-times and accept if the final measurement
accepts more than (1 — d)r times, where § is a small constant

Theorem

Let r, g, n € N, n > 10. Assume that a function f : {0,1}2" — {0,1} is chosen
uniformly at random. Then, an honest prover succeeds in a protocol with noise level at

most 1% with probability at least 1 — ¢”. Attackers controlling at most q < %n —5
qubits each round will succeed with probability at most ¢’”, where ¢, c’ < 1 are
universal constants.

e Proof: Chernoff bound



Noise robust measuring protocol, continued

Pros:

e The noise robustness of 1% holds against any form of noise

e Tweaking numbers, we can get about 6% noise robustness
Cons:

e 1% is not enough since photon loss in reasonable settings is 90% and more

e At 50% photon loss, the attackers can simply guess a basis and claim that they have
lost the qubit if they guessed wrong. This breaks the protocol perfectly

13



Protocol with commitment

time

position
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New step: commitment

If qubit received prover sends
c = 1; otherwise ¢ =0

Strings x, y arrive slightly later
(delay 9)

Eliminates transmission loss 1y
Only loss at prover np remains

Challenge: Commitment allows
attackers to start with p*Y
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Main result loss-tolerance

Ongoing joint work with R. Allerstorfer, H. Buhrman, M. Christandl|, L. Escola-Farras,
F. Speelman, P. Verduyn Lunel

Corollary

Suppose we run 320k rounds of c-QPVEge,. Then either the attackers are detected
with probability bigger than 1 — 10~° or we have the following bound on the
probability of attacking a single round c—QPV]’;)B84 depending only on k:

4
Plattack c-QPVEpe,] < Plattack QPVEgge,] + T (1)

So far, we do not have a proof for adaptive attacks = work in progress



Outlook




Experimental photon-presence detection

How does the honest prover know whether she has received the qubit from the
verifiers?
e Recent demonstration of true non-destructive photon presence detection [NFLR21]

e At the moment high dark count rate and experimentally very challenging, will
hopefully improve in the future

e Poor-person’s photon presence detection: Prover teleports photon to herself
e Can in principle be realized with linear optics, has been demonstrated in [MMWZ96]
e Experimentally more within reach, small success probability enough

e Requirements: EPR pair on demand, partial Bell state measurement, short-time
quantum memory, measurements depending on (x,y)
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Open questions

f has to be truly random in our proof — circuit of exponential size. Can we get a

function with circuit of polynomial size? Pseudo-randomness?

e Can we prove linear lower bounds also for concrete functions?

We proved security for sequential repetition. Can we do parallel repetition securely?

Bounds in terms of the number of qubits. Can we replace by an entanglement

measure? Perhaps entropies or Schmidt rank?

Linear lower bounds vs attacks with 2”7 EPR pairs. Can we close the gap?
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Conclusion

The routing are simple, secure against entanglement, and experimentally feasible

e The honest prover only needs to handle one qubit and needs not even measure it
e The verifiers need not create entangled states or have quantum memory

e The more classical bits the verifiers send, the more qubits the attackers need

e The honest prover, however, does not need more quantum resources

e Can be made fully loss-tolerant by adding commitment

e Seems experimentally feasible in principle

We can spend classical resources to increase the quantum cost of the attackers without

increasing the quantum cost of the prover!
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