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Introduction

� Why do you trust the clerk behind the counter at the bank?

� Answer: Because of her location!

� Position-based cryptography: Use position as credential

� Primitive: Secure (quantum) position verification
2



The classical situation



Classical protocols

� Special relativity:

Information cannot

travel faster than the

speed of light

� Distance bounding:

Send questions, accept if

answers arrive fast

enough
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Classical attacks

� Is this protocol secure?

� No, collaborating

attackers can break this

protocol
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Why could going quantum help?

� Key step: Alice and Bob have to copy their bitstrings x and y

� No-cloning theorem: Quantum information cannot be copied perfectly

� On the downside, quantum attackers are more powerful as well

� In particular, they can use entanglement for quantum teleportation

� Unconditional security impossible, but we want to prove that attackers need a lot of

entanglement
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Simple quantum protocols



Qubit routing protocol
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� Protocol goes back to

Kent et al. [KMS11]

� Verifiers prepare

entangled pair |Ω⟩
� Send one qubit Q of it

and keep the other

� At the end of the

protocol: Bell

measurement
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Quantum attacks
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Ã

Ux

x

A Ac B̃

V y

y

B Bc

Ã
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Security of qubit routing

Theorem[BCS22]

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. Then there exists a function f : {0, 1}2n → {0, 1} with the

property that, if the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
n − 5,

the attackers are caught with probability at least 2 · 10−2. Moreover, a uniformly

random function f will have this property (except with exponentially small probability).

� Develops further prove method in [BFSS13]

� Success probability of the attackers can be suppressed exponentially by sequential

repetition
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Measuring protocol
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� Protocol resembles

[BK11]

� Verifiers prepare Q

randomly as |0⟩ or |1⟩,
apply Hadamard gate if

f (x , y) = 1

� Prover measures in basis

specified by f (x , y),

sends back outcome b

� Verifiers check

consistency of b with the

Q they sent

9



Pros and cons

� The protocol in [BK11] uses n-qubits, whereas we use a single qubit and a Boolean

function on 2n bits

� Using an entropic uncertainty relation and modifying the proof slightly, we can prove

the same security as for the routing protocol

� The routing protocol is simpler for the prover because there is no need to measure

� Security proof for the measuring protocol still holds if quantum information travels

slowly

� Fits current technology better (qubits transmitted using fiber optics)
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Concrete functions

Binary inner product function

IP(x , y) =
n∑

i=1

xiyi (mod 2) ,

Theorem

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. If the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
log n − 5,

the attackers are caught during the routing and measuring protocols with probability at

least 2 · 10−2, respectively.

� Proof based on communication complexity
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Dealing with photon loss



Noise robust measuring protocol

� Hitherto, we assumed that the honest prover succeeds perfectly

� Now, we only assume that she succeeds with probability at least 0.99

� Repeat the protocol independently r -times and accept if the final measurement

accepts more than (1− δ)r times, where δ is a small constant

Theorem

Let r , q, n ∈ N, n ≥ 10. Assume that a function f : {0, 1}2n → {0, 1} is chosen

uniformly at random. Then, an honest prover succeeds in a protocol with noise level at

most 1% with probability at least 1− c r . Attackers controlling at most q ≤ 1
2n − 5

qubits each round will succeed with probability at most c ′r , where c, c ′ < 1 are

universal constants.

� Proof: Chernoff bound
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Noise robust measuring protocol, continued

Pros:

� The noise robustness of 1% holds against any form of noise

� Tweaking numbers, we can get about 6% noise robustness

Cons:

� 1% is not enough since photon loss in reasonable settings is 90% and more

� At 50% photon loss, the attackers can simply guess a basis and claim that they have

lost the qubit if they guessed wrong. This breaks the protocol perfectly
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Protocol with commitment
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� New step: commitment

� If qubit received prover sends

c = 1; otherwise c = 0

� Strings x , y arrive slightly later

(delay δ)

� Eliminates transmission loss ηV

� Only loss at prover ηP remains

� Challenge: Commitment allows

attackers to start with ρx ,y
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Main result loss-tolerance

Ongoing joint work with R. Allerstorfer, H. Buhrman, M. Christandl, L. Escolà-Farràs,

F. Speelman, P. Verduyn Lunel

Corollary

Suppose we run 320k3 rounds of c-QPVf
BB84. Then either the attackers are detected

with probability bigger than 1− 10−9 or we have the following bound on the

probability of attacking a single round c-QPVf
BB84 depending only on k :

P[attack c-QPVf
BB84] ≤ P[attackQPVf

BB84] +
4

k
. (1)

So far, we do not have a proof for adaptive attacks =⇒ work in progress
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Outlook



Experimental photon-presence detection

How does the honest prover know whether she has received the qubit from the

verifiers?

� Recent demonstration of true non-destructive photon presence detection [NFLR21]

� At the moment high dark count rate and experimentally very challenging, will

hopefully improve in the future

� Poor-person’s photon presence detection: Prover teleports photon to herself

� Can in principle be realized with linear optics, has been demonstrated in [MMWZ96]

� Experimentally more within reach, small success probability enough

� Requirements: EPR pair on demand, partial Bell state measurement, short-time

quantum memory, measurements depending on (x , y)
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Open questions

� f has to be truly random in our proof → circuit of exponential size. Can we get a

function with circuit of polynomial size? Pseudo-randomness?

� Can we prove linear lower bounds also for concrete functions?

� We proved security for sequential repetition. Can we do parallel repetition securely?

� Bounds in terms of the number of qubits. Can we replace by an entanglement

measure? Perhaps entropies or Schmidt rank?

� Linear lower bounds vs attacks with 2n EPR pairs. Can we close the gap?
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Conclusion

The routing are simple, secure against entanglement, and experimentally feasible

� The honest prover only needs to handle one qubit and needs not even measure it

� The verifiers need not create entangled states or have quantum memory

� The more classical bits the verifiers send, the more qubits the attackers need

� The honest prover, however, does not need more quantum resources

� Can be made fully loss-tolerant by adding commitment

� Seems experimentally feasible in principle

We can spend classical resources to increase the quantum cost of the attackers without

increasing the quantum cost of the prover!
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