Secure quantum position verification

Andreas Bluhm Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

QuantAlps Days, October 2, 2023

Introduction

- Why do you trust the clerk behind the counter at the bank?
- Answer: Because of her location!
- Position-based cryptography: Use position as credential
- Primitive: Secure (quantum) position verification

The classical situation

Classical protocols

- Special relativity: Information cannot travel faster than the speed of light
- Distance bounding:
 Send questions, accept if answers arrive fast enough

Classical attacks

- Is this protocol secure?
- No, collaborating attackers can break this protocol

Why could going quantum help?

- Key step: Alice and Bob have to copy their bitstrings x and y
- No-cloning theorem: Quantum information cannot be copied perfectly
- On the downside, quantum attackers are more powerful as well
- In particular, they can use entanglement for quantum teleportation
- Unconditional security impossible, but we want to prove that attackers need a lot of entanglement

Simple quantum protocols

Qubit routing protocol

- Protocol goes back to Kent et al. [KMS11]
- Verifiers prepare entangled pair $|\Omega\rangle$
- Send one qubit Q of it and keep the other
- At the end of the protocol: Bell measurement

Quantum attacks

Security of qubit routing

Theorem[BCS22]

Let $n \ge 10$. Let us assume that the verifiers choose the bit strings x, y of length n uniformly at random. Then there exists a function $f: \{0,1\}^{2n} \to \{0,1\}$ with the property that, if the number q of qubits each of the attackers controls satisfies

$$q\leq \frac{1}{2}n-5,$$

the attackers are caught with probability at least $2 \cdot 10^{-2}$. Moreover, a uniformly random function f will have this property (except with exponentially small probability).

- Develops further prove method in [BFSS13]
- Success probability of the attackers can be suppressed exponentially by sequential repetition

Measuring protocol

- Protocol resembles[BK11]
- Verifiers prepare Q randomly as $|0\rangle$ or $|1\rangle$, apply Hadamard gate if f(x,y)=1
- Prover measures in basis specified by f(x, y), sends back outcome b
- Verifiers check consistency of b with the Q they sent

Pros and cons

- The protocol in [BK11] uses *n*-qubits, whereas we use a single qubit and a Boolean function on 2*n* bits
- Using an entropic uncertainty relation and modifying the proof slightly, we can prove the same security as for the routing protocol
- The routing protocol is simpler for the prover because there is no need to measure
- Security proof for the measuring protocol still holds if quantum information travels slowly
- Fits current technology better (qubits transmitted using fiber optics)

Concrete functions

Binary inner product function

$$IP(x,y) = \sum_{i=1}^{n} x_i y_i \pmod{2},$$

Theorem

Let $n \ge 10$. Let us assume that the verifiers choose the bit strings x, y of length n uniformly at random. If the number q of qubits each of the attackers controls satisfies

$$q \le \frac{1}{2} \log n - 5,$$

the attackers are caught during the routing and measuring protocols with probability at least $2 \cdot 10^{-2}$, respectively.

Proof based on communication complexity

Dealing with photon loss

Noise robust measuring protocol

- Hitherto, we assumed that the honest prover succeeds perfectly
- Now, we only assume that she succeeds with probability at least 0.99
- Repeat the protocol independently r-times and accept if the final measurement accepts more than $(1 \delta)r$ times, where δ is a small constant

Theorem

Let $r,\ q,\ n\in\mathbb{N},\ n\geq 10$. Assume that a function $f:\{0,1\}^{2n}\to\{0,1\}$ is chosen uniformly at random. Then, an honest prover succeeds in a protocol with noise level at most 1% with probability at least $1-c^r$. Attackers controlling at most $q\leq \frac{1}{2}n-5$ qubits each round will succeed with probability at most c'^r , where c,c'<1 are universal constants.

• Proof: Chernoff bound

Noise robust measuring protocol, continued

Pros:

- The noise robustness of 1% holds against any form of noise
- Tweaking numbers, we can get about 6% noise robustness

Cons:

- 1% is not enough since photon loss in reasonable settings is 90% and more
- At 50% photon loss, the attackers can simply guess a basis and claim that they have lost the qubit if they guessed wrong. This breaks the protocol perfectly

Protocol with commitment

- New step: commitment
- If qubit received prover sends
 c = 1; otherwise c = 0
- Strings x, y arrive slightly later (delay δ)
- Eliminates transmission loss η_V
- Only loss at prover η_P remains
- Challenge: Commitment allows attackers to start with $\rho^{x,y}$

Main result loss-tolerance

Ongoing joint work with R. Allerstorfer, H. Buhrman, M. Christandl, L. Escolà-Farràs, F. Speelman, P. Verduyn Lunel

Corollary

Suppose we run $320k^3$ rounds of c-QPV $^f_{\rm BB84}$. Then either the attackers are detected with probability bigger than $1-10^{-9}$ or we have the following bound on the probability of attacking a single round c-QPV $^f_{\rm BB84}$ depending only on k:

$$\mathbb{P}[\operatorname{attack} c\text{-}\operatorname{QPV}_{\operatorname{BB84}}^f] \le \mathbb{P}[\operatorname{attack} \operatorname{QPV}_{\operatorname{BB84}}^f] + \frac{4}{k}. \tag{1}$$

So far, we do not have a proof for adaptive attacks \implies work in progress

Outlook

Experimental photon-presence detection

How does the honest prover know whether she has received the qubit from the verifiers?

- Recent demonstration of true non-destructive photon presence detection [NFLR21]
- At the moment high dark count rate and experimentally very challenging, will hopefully improve in the future
- Poor-person's photon presence detection: Prover teleports photon to herself
- Can in principle be realized with linear optics, has been demonstrated in [MMWZ96]
- Experimentally more within reach, small success probability enough
- Requirements: EPR pair on demand, partial Bell state measurement, short-time quantum memory, measurements depending on (x, y)

Open questions

- f has to be truly random in our proof → circuit of exponential size. Can we get a function with circuit of polynomial size? Pseudo-randomness?
- Can we prove linear lower bounds also for concrete functions?
- We proved security for sequential repetition. Can we do parallel repetition securely?
- Bounds in terms of the number of qubits. Can we replace by an entanglement measure? Perhaps entropies or Schmidt rank?
- Linear lower bounds vs attacks with 2^n EPR pairs. Can we close the gap?

Conclusion

The routing are simple, secure against entanglement, and experimentally feasible

- The honest prover only needs to handle one qubit and needs not even measure it
- The verifiers need not create entangled states or have quantum memory
- The more classical bits the verifiers send, the more qubits the attackers need
- The honest prover, however, does not need more quantum resources
- Can be made fully loss-tolerant by adding commitment
- Seems experimentally feasible in principle

We can spend classical resources to increase the quantum cost of the attackers without increasing the quantum cost of the prover!

References

[BCS22]: AB, M. Christandl, and F. Speelman. A single-qubit position verification protocol that is secure against multi-qubit attacks. *Nature Physics*, 18(6):623–626, 2022.

[BFSS13]: H. Buhrman *et al.* The garden-hose model. In *Proceedings of the 4th Conference on Innovations in Theoretical Computer Science*, ITCS '13, pages 145–158. ACM, 2013.

[BK11]: S. Beigi and R. König. Simplified instantaneous non-local quantum computation with applications to position-based cryptography. *New Journal of Physics*, 13(9):093036, 2011.

[KMS11] A. Kent *et al.* Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints. *Physical Review A*, 84:012326, 2011.

[MMWZ96] M. Michler *et al.* Interferometric Bell-state analysis. *Physical Review A*, 53(3):R1209, 1996.

[NFLR21] D. Niemietz *et al.* Nondestructive detection of photonic qubits. *Nature*, 591(7851):570–574, 2021.