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Introduction

� Why do you trust the clerk behind the counter at the bank?

� Answer: Because of her location!

� Position-based cryptography: Use position as credential



The classical situation



Classical protocols
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Classical attacks
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Why could going quantum help?

� Key step: Alice and Bob have to copy their bit strings x and y

� No-cloning theorem: Quantum information cannot be copied perfectly

� In other words, there is no quantum channel such that ρ 7→ ρ⊗ ρ for all quantum

states ρ

� On the downside, quantum attackers are more powerful as well

� In particular, they can use entanglement for quantum teleportation

� Unconditional security impossible, but we want to prove that attackers need a lot of

entanglement



The single qubit protocol



Qubit routing protocol
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� Protocol goes back to

[KMS11]

� Verifiers prepare |0〉, |1〉,
|+〉, |−〉 with equal

probability

� At the end of the

protocol: measure in

computational or

Hadamard basis,

depending on qubit sent



Quantum attacks
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A Ã Bc x , y Ac B̃ Bx , y

Ux V y

LxyK xy

time



Main theorem

Theorem

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. Then there exists a function f : {0, 1}2n → {0, 1} with the

property that, if the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
n − 5,

the attackers are caught with probability at least 2 · 10−2. Moreover, a uniformly

random function f will have this property (except with exponentially small probability).

� Success probability of the attackers can be suppressed exponentially by sequential

repetition



Proof idea (1/3)

� Qubit routing already considered in [BFSS13], but only for perfect attacks

� Our paper makes the proof strategy robust

� Equivalent protocol: Verifiers send half of an entangled pair

� First observation (already present in [BFSS13]): Let |ψ0〉 be a state from which the

qubit can be recovered at V0 by acting on AÃBc and |ψ1〉 a state from which the

qubit can be recovered at V1 by acting on BB̃Ac . Then, the overlap of the two states

cannot be too large.

� → Action of attackers before communicating already determines where the qubit ends

up



Proof idea (2/3)

� The action of attackers before communicating already determines where the qubit

ends up

� Discretize the possible quantum strategies of the attackers with the help of ε-nets

� Construct classical rounding functions which capture the essentials of the quantum

strategies → (ε, q)-classical rounding

� These give rise to a Boolean function for each attack Alice and Bob could do

controlling at most q qubits each

� They agree with the Boolean function f used in the routing protocol on all pairs of

classical bit strings (x , y) on which the attackers succeed with probability at least

1− ε2



Proof idea (3/3)

� Constructed (ε, q)-classical rounding

� Counting argument: number of (ε, q)-classical roundings � number of Boolean

functions f (on 2n bits)

� q ≤ n/2− 5 → most Boolean functions are far from any functions produced from

classical roundings

� For q ≤ n/2− 5, Alice and Bob cannot succeed with probability at least 1− ε2 on too

many input pairs (x , y)



Measuring protocol
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� Protocol resembles

[BK11]

� Verifiers prepare Q

randomly as |0〉 or |1〉,
apply Hadamard gate if

f (x , y) = 1

� Prover measures in basis

specified by f (x , y),

sends back outcome b

� Verifiers check

consistency of b with the

Q they sent



Pros and cons

� The protocol in [BK11] uses n-qubits, whereas we use a single qubit and a Boolean

function on 2n bits

� Using an entropic uncertainty relation and modifying the proof slightly, we can prove

the same security as for the routing protocol

� The routing protocol is simpler for the prover because there is no need to measure

� Security proof for the measuring protocol still holds if quantum information travels

slowly

� Fits current technology better (qubits transmitted using fiber optics)



Noise robust protocol

� Hitherto, we assumed that the honest prover succeeds perfectly

� Now, we only assume that she succeeds with probability at least 0.99

� Repeat the protocol independently r -times and accept if the final measurement

accepts more than (1− δ)r times, where δ is a small constant

Theorem

Let r , q, n ∈ N, n ≥ 10. Assume that a function f : {0, 1}2n → {0, 1} is chosen

uniformly at random. Then, an honest prover succeeds in a protocol with noise level at

most 1% with probability at least 1− c r . Attackers controlling at most q ≤ 1
2n − 5

qubits each round will succeed with probability at most c ′r , where c, c ′ < 1 are

universal constants.

� Proof: Chernoff bound



Concrete functions

Binary inner product function

IP(x , y) =
n∑

i=1

xiyi (mod 2) ,

Theorem

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. If the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
log n − 5,

the attackers are caught during the routing and measuring protocols with probability at

least 2 · 10−2, respectively.

� Proof based on communication complexity



Outlook



The ultimate goal

� One would like to prove that attackers need an exponential amount of entanglement

to break some position-verification protocol

� In our case, the honest prover only manipulates one qubit, whereas the attackers need

Ω(n) qubits

� That’s not only exponentially more resources, but unboundedly many more!

� That is still true for concrete functions, where the attackers need Ω(log n) qubits

� Why does that not already show everything we could wish for?

� → The honest prover needs to manipulate Θ(n) classical bits



Conclusion

The routing and measuring protocols have some nice features:

� The honest prover only needs to handle one qubit and needs not even measure it

� The verifiers need not create entangled states or have quantum memory

� The more classical bits the verifiers send, the more qubits the attackers need

� The honest prover, however, does not need more quantum resources

We can spend classical resources to increase the quantum cost of the attackers without

increasing the quantum cost of the prover!
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