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Introduction

Which properties should a practically implementable QPV protocol have?

� Protocol should be as simple as possible for the honest parties

� Protocol should be as secure as possible against entangled attackers

� Protocol should be tolerant against photon loss
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Simple QPV protocols



Qubit routing protocol
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time
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qubit Q y ∈ {0, 1}n
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� Protocol goes back to

Kent et al. [KMS11]

� Verifiers prepare

entangled pair |Ω⟩
� Send one qubit Q of it

and keep the other

� At the end of the

protocol: Bell

measurement
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Quantum attacks
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Main theorem

Theorem [BCS22]

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. Then there exists a function f : {0, 1}2n → {0, 1} with the

property that, if the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
n − 5,

the attackers are caught with probability at least 2 · 10−2. Moreover, a uniformly

random function f will have this property (except with exponentially small probability).

� Success probability of the attackers can be suppressed exponentially by sequential

repetition
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Proof idea (1/3)

� Qubit routing already considered in [BFSS13], but only for perfect attacks

� Our paper makes the proof strategy robust

� First observation (already present in [BFSS13]): Let |ψ0⟩ be a state from which the

qubit can be recovered at V0 by acting on AÃBc and |ψ1⟩ a state from which the

qubit can be recovered at V1 by acting on BB̃Ac . Then, the overlap of the two states

cannot be too large.

� → action of attackers before communicating already determines where the qubit ends

up
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Classical rounding

Definition

Let ϵ > 0, l ∈ N. A q-qubit strategy for PV f
qubit is (ϵ, l)-perfect if on l pairs of strings

(x , y), Alice and Bob are caught by the verifiers with probability at most ϵ2.

Equivalently, Alice and Bob produce a state
∣∣∣ψ̃〉 at the end of the protocol such that

P(ρRA, |Ω⟩⟨Ω|RA) ≤ ϵ if f (x , y) = 0 and P(ρRB , |Ω⟩⟨Ω|RB) ≤ ϵ if f (x , y) = 1.

Definition

Let q, k, n ∈ N, ϵ > 0. Then,

g : {0, 1}3k → {0, 1}

is an (ϵ, q)-classical rounding of size k if for all f : {0, 1}2n → {0, 1}, for all states |ψ⟩
on 2q + 1 qubits, for all l ∈ {1, . . . , 22n} and for all (ϵ, l)-perfect q-qubit strategies for

PV f
qubit, there are functions fA : {0, 1}n → {0, 1}k , fB : {0, 1}n → {0, 1}k and

λ ∈ {0, 1}k such that g(fA(x), fB(y), λ) = f (x , y) on at least l pairs (x , y).
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Proof idea (2/3)

� Action of attackers before communicating determines where qubit will end up

� Use ϵ-nets of size 2k to discretize Alice’s and Bob’s unitaries and their initial state

fA: x ∈ {0, 1}n label of Ux , k-bits string

fB : y ∈ {0, 1}n label of V y , k-bits string

λ: label of |ψ⟩, k-bits string

� You can determine from there where the qubit goes→ (ϵ, q)-classical rounding

g : {0, 1}3k → {0, 1}
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Proof idea (3/3)

� Constructed (ϵ, q)-classical rounding

� Counting argument: number of (ϵ, q)-classical roundings ≪ number of Boolean

functions f (on 2n bits)

� q ≤ n/2− 5 → most Boolean functions are far from any functions produced from

classical roundings

� For q ≤ n/2− 5, Alice and Bob cannot succeed with probability at least 1− ϵ on too

many input pairs (x , y)
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Measuring protocol

V0 V1

P

V0 V1

x ∈ {0, 1}n

b ∈ {0, 1}

time

qubit Q y ∈ {0, 1}n

b ∈ {0, 1}

position

� Protocol resembles

[BK11]

� Verifiers prepare Q

randomly as |0⟩ or |1⟩,
apply Hadamard gate if

f (x , y) = 1

� Prover measures in basis

specified by f (x , y),

sends back outcome b

� Verifiers check

consistency of b with the

Q they sent
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Pros and cons

� The protocol in [BK11] uses n-qubits, whereas we use a single qubit and a Boolean

function on 2n bits

� Using an entropic uncertainty relation and modifying the proof slightly, we can prove

the same security as for the routing protocol

� The routing protocol is simpler for the prover because there is no need to measure

� Security proof for the measuring protocol still holds if quantum information travels

slowly

� Fits current technology better (qubits transmitted using fiber optics)
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Concrete functions

Binary inner product function

IP(x , y) =
n∑

i=1

xiyi (mod 2) ,

Theorem

Let n ≥ 10. Let us assume that the verifiers choose the bit strings x , y of length n

uniformly at random. If the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
log n − 5,

the attackers are caught during the routing and measuring protocols with probability at

least 2 · 10−2, respectively.

� Proof based on communication complexity
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Towards photon loss-tolerant

protocols



Noise robust measuring protocol

� Hitherto, we assumed that the honest prover succeeds perfectly

� Now, we only assume that she succeeds with probability at least 0.99

� Repeat the protocol independently r -times and accept if the final measurement

accepts more than (1− δ)r times, where δ is a small constant

Theorem

Let r , q, n ∈ N, n ≥ 10. Assume that a function f : {0, 1}2n → {0, 1} is chosen

uniformly at random. Then, an honest prover succeeds in a protocol with noise level at

most 1% with probability at least 1− c r . Attackers controlling at most q ≤ 1
2n − 5

qubits each round will succeed with probability at most c ′r , where c, c ′ < 1 are

universal constants.

� Proof: Chernoff bound
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Noise robust measuring protocol, continued

Pros:

� The noise robustness of 1% holds against any form of noise

� Tweaking numbers, we can get about 6% noise robustness

Cons:

� 1% is not enough since photon loss in reasonable settings is 90% and more

� At 50% photon loss, the attackers can simply guess a basis and claim that they have

lost the qubit if they guessed wrong. This breaks the protocol perfectly
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SWAP test protocol

� Protocol analyzed in [ABSVL21]

� Based on SWAP test, verifiers send states with known overlap and compare statistics

� Fully photon loss-tolerant protocol secure against unentangled attackers with

quantum communication

� Parallel repetition

� Practically feasible

� Can be broken with linear amount of EPR pairs

16



Partially loss-tolerant measuring protocol (1/3)

� Paper [EFS22] analyzed the measuring protocol under photon loss

� First result: Security region for protocol with f (x , y) = y , unentangled attackers

� Form of monogamy of entanglement game with loss

� Techniques: Modified NPA hierarchy + combination of guessing and optimal attack
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Partially loss-tolerant measuring protocol (2/3)

� Previous protocol insecure if attackers share EPR pair

� Second result: Security region for arbitrary functions f , linear amount of entanglement

� Security proof very similar to measuring protocol without loss
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Partially loss-tolerant measuring protocol (3/3)

� So far, we could not go further than η = 0.5

� At that point, attackers can just guess the basis

� How to go beyond this threshold?

� Use more than 2 bases

� Third result: allows to go to lower η

� Downside: becomes experimentally more challenging as well

19



Making QPV protocols fully

loss-tolerant



Protocol with commitment

V0 P V1

δ

c c

a a

��ηV

ηP

position

time

Qx ∈ {0, 1}n y ∈ {0, 1}n

� New step: commitment

� If qubit received prover sends

c = 1; otherwise c = 0

� Strings x , y arrive slightly later

(delay δ)

� Eliminates transmission loss ηV

� Only loss at prover ηP remains

� Challenge: Commitment allows

attackers to start with ρx ,y
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Taming quantum instruments

� For their commitment, the attackers can use quantum instruments

IA/B = {IA/B
c }c∈{0,1}, i.e., collections of CP maps summing to a quantum channel

� Instruments model a measurement with post-measurement state

Lemma (see, e.g., M. Hayashi’s book)

Let I = {Ii}i∈Ω be an instrument, and {Mi}i its corresponding POVM, i.e.

I∗
i (1) = Mi . Then, for every i ∈ Ω, there exists a quantum channel Ei such that

Ii (ρ) = Ei
(√

Miρ
√
Mi

)
(1)

Upon committing, we can absorb the quantum channel into the protocol, need only

deal with the measurement
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Gentle measurement helps

� Alice and Bob can perform POVMs {Mx
A,1−Mx

A} and {My
B ,1−My

B} to decide their

commitment

� Intuition: Since Alice and Bob may not commit differently, they cannot use their

knowledge of x , y

Lemma (Gentle Measurement Lemma)

Let ρ be a quantum state and {M,1−M} be a two-outcome measurement. If

tr[Mρ] ≥ 1− ε, then the post-measurement state

ρ′ =

√
Mρ

√
M

tr[Mρ]
(2)

of measuring M fulfills

||ρ− ρ′||1 ≤ 2
√
ε. (3)
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Gentle measurement helps, continued

Post-measurement state after Lüders instrument:

ρxy :=

(√
Mx

A ⊗
√
My

B

)
ρ
(√

Mx
A ⊗

√
My

B

)
tr
[(
Mx

A ⊗My
B

)
ρ
] .

Using the gentle measurement lemma, we can prove:

Lemma

Assume that for inputs (x , y), (x ′, y) and (x ′, y ′) in {0, 1}2n the probability of

answering different commitments is upper bounded by some ε > 0. Then,

∥ρxy − ρx
′y ′∥1 ≤ 8

√
ε.

If no error was permitted, we could just replace all ρxy by ρ00, say.
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Erasing edges from graphs

x ′

x

y ′

y

� What happens if the attackers make significant

commitment only on some pairs (x , y)?

� Corresponds to erasing edges from the fully

connected bipartite graph

� If we erase a fraction c̃ , how many vertices can we

still reach in 2 steps?

� There is one x ′ with at least (1− c̃)2n edges

� Each of the vertices reached used to have 2n edges

attached, but we removed c22n

� (1− 2c̃)22n can still be reached within 2 steps

from x ′
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Replacing by a fixed state

Set of (x , y) where commitment errors are low:

Σε := {(x , y) | tr
{(

Mx
A ⊗ (I−My

B)
)
ρ
}
≤ ε ∧ tr

{(
I−Mx

A)⊗My
B

)
ρ
}
≤ ε}.

On these pairs we can replace by a fixed state:

Lemma

If |Σc
ε | ≤ c̃22n, then there is a pair (x∗, y∗) such that there exist at least (1− 2c̃)22n

pairs (x ′, y ′) ∈ Σε fulfilling

∥ρx∗y∗ − ρx
′y ′∥1 ≤ 8

√
ε.
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Main result

Combining the previous ideas, we can prove:

Theorem

Let ε and c̃ be as described above. On the rounds the attackers commit to play, the

following bound on the probability of attacking c-QPVf
BB84 holds:

P[attack c-QPVf
BB84] ≤ P[attackQPVf

BB84] + (1− 2c̃)8
√
ε+ 2c̃ .

How do we get c̃ and ε?
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Parameter estimation

Idea: If we run the protocol a couple of times, the attackers will only escape detection

if their commitment error is low on most pairs.

Corollary

Suppose we run 320k3 rounds of c-QPVf
BB84. Then either the attackers are detected

with probability bigger than 1− 10−9 or we have the following bound on the

probability of attacking a single round c-QPVf
BB84 depending only on k :

P[attack c-QPVf
BB84] ≤ P[attackQPVf

BB84] +
4

k
. (4)

So far, we do not have a proof for adaptive attacks =⇒ work in progress
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Experimental photon-presence detection

How does the honest prover know whether she has received the qubit from the

verifiers?

� Recent demonstration of true non-destructive photon presence detection [NFLR21]

� At the moment high dark count rate and experimentally very challenging, will

hopefully improve in the future

� Poor-person’s photon presence detection: Prover teleports photon to herself

� Can in principle be realized with linear optics, has been demonstrated in [MMWZ96]

� Experimentally more within reach, small success probability enough

� Requirements: EPR pair on demand, partial Bell state measurement, short-time

quantum memory, measurements depending on (x , y)
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Which protocols can we make loss-tolerant?

� We have implicitly assumed that the underlying protocol to be made loss tolerant was

the measurement protocol

� However, we only used few properties of it in the proof

� In principle, the commitment works for all protocols that can deal with slow quantum

information and where the prover returns classical bits

� We have found a general method to make such protocols fully tolerant against photon

loss
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Open questions

� Better lower bounds for concrete functions

� Replace dimension count by entanglement measure

� Parallel repetition

� Superpolynomial lower bounds
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Conclusion

� Measuring protocol is a very simple protocol (1 qubit only)

� Secure against linear amount of entanglement

� Can be made fully loss-tolerant by adding commitment

� The honest prover, however, does not need more quantum resources

� Seems experimentally feasible in principle

We can make many QPV protocols loss-tolerant by adding a commitment step
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