Matrix convex sets in quantum information theory: Measurement compatibility and beyond

Andreas Bluhm
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
February 14, 2023, Toulouse

Matrix convex sets

Matrix convex sets

We consider free sets:

$$
\mathcal{F}=\bigsqcup_{i \in \mathbb{N}} \mathcal{F}_{i},
$$

where $\mathcal{F}_{i} \subseteq\left(\mathcal{M}_{i}^{\mathrm{sa}}\right)^{g}$.
The free set \mathcal{F} is matrix convex if it is closed under direct sums and unital completely positive maps:

- $\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{F}_{i},\left(B_{1}, \ldots, B_{g}\right) \in \mathcal{F}_{j} \Longrightarrow\left(A_{1} \oplus B_{1}, \ldots, A_{g} \oplus B_{g}\right) \in \mathcal{F}_{i+j}$.
- $\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{F}_{i}, \Phi: \mathcal{M}_{i} \rightarrow \mathcal{M}_{j}$ UCP $\Longrightarrow\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{g}\right)\right) \in \mathcal{F}_{j}$

UCP maps $\Phi: \mathcal{M}_{d} \rightarrow \mathcal{M}_{m}$ are maps such that $\Phi \otimes \operatorname{id}_{n}$ is positive for all $n \in \mathbb{N}$ and $\Phi\left(I_{d}\right)=I_{m}$.
Alternatively, $\Phi(X)=\sum_{i} K_{i}^{*} X K_{i}$ such that $\sum_{i} K_{i}^{*} K_{i}=I_{m}, K_{i} \in \mathcal{M}_{d, m}$.

Minimal and maximal matrix convex sets

- Unless \mathcal{F}_{1} is a simplex, there are arbitrarily many different matrix convex sets with the same \mathcal{F}_{1}. However, there is a largest and a smallest such set:
- For a closed convex set \mathcal{C},

$$
\mathcal{W}_{n}^{\max }(\mathcal{C}):=\left\{X \in\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}: \sum_{i=1}^{g} c_{i} X_{i} \leq \alpha \mid \forall(\alpha, c) \text { supp. hyperplanes for } \mathcal{C}\right\}
$$

- For a closed convex set \mathcal{C},

$$
\mathcal{W}_{n}^{\min }(\mathcal{C}):=\left\{\sum_{j} x=z_{j} \otimes Q_{j} \in\left(\mathcal{M}_{n}^{\text {sa }}\right)^{g}: z_{j} \in \mathcal{C}, \quad Q_{j} \geq 0 \forall j, \sum_{j} Q_{j}=I_{n}\right\}
$$

- Observe $\mathcal{W}_{1}^{\text {max }}(\mathcal{C})=\mathcal{C}=\mathcal{W}_{1}^{\min }(\mathcal{C}) . \mathcal{W}^{\text {max }}(\mathcal{C})$ quantizes hyperplanes, $\mathcal{W}^{\text {min }}(\mathcal{C})$ quantizes extreme points.

Inclusion sets

Definition

Let $d, g \in \mathbb{N}$ and $\mathcal{C} \subset \mathbb{R}^{g}$ closed convex. The inclusion set is defined as

$$
\Delta_{\mathcal{C}}(d):=\left\{s \in[0,1]^{g}: s \cdot \mathcal{W}_{d}^{\max }(\mathcal{C}) \subseteq \mathcal{W}_{d}^{\min }(\mathcal{C})\right\}
$$

If \mathcal{C} is the ℓ_{∞}^{g} unit ball, we write $\Delta_{\square}(g, d)$.

Depending on the set \mathcal{C}, sometimes bounds on the inclusion set are known.

Measurement compatibility

Quantum states and measurements

- Motivation: Classical state \rightsquigarrow probability distributions: $p \in \mathbb{R}^{d}, p \geq 0, \sum_{i} p_{i}=1$.
- Quantum states \rightsquigarrow density matrices: $\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$.
- Measurement outcomes are labeled $\{1, \ldots, k\}$, need to be assigned probabilities.
- Measurements: Tuples of matrices $\left(E_{1}, \ldots, E_{k}\right)$ such that $\left(\operatorname{Tr}\left[E_{1} \rho\right], \ldots, \operatorname{Tr}\left[E_{k} \rho\right]\right)$ is a probability distribution for all states ρ.
- $\operatorname{Tr}\left[E_{i} \rho\right] \in \mathbb{R} \rightsquigarrow E_{i}=E_{i}^{*}$.
- $\operatorname{Tr}\left[E_{i} \rho\right] \geq 0 \rightsquigarrow E_{i} \geq 0$.
- $\sum_{i} \operatorname{Tr}\left[E_{i} \rho\right]=1 \rightsquigarrow \sum_{i} E_{i}=I_{d}$.
- Tuples of PSD matrices summing to identity are called positive operator-valued measures (POVMs).

Quantum measurements: Compatibility

- Quantum measurements \rightsquigarrow give the probabilities of the classical outcomes when a quantum state enters a measurement apparatus. Mathematically, measurements are modeled by POVMs.

Definition

Two POVMs, $A=\left(A_{1}, \ldots, A_{k}\right)$ and $B=\left(B_{1}, \ldots, B_{l}\right)$, are called compatible if there exists a third POVM $C=\left(C_{i j}\right)_{i \in[k], j \in[l]}$ such that

$$
\forall i \in[k], \quad A_{i}=\sum_{j=1}^{l} C_{i j} \quad \text { and } \quad \forall j \in[I], \quad B_{j}=\sum_{i=1}^{k} C_{i j}
$$

The definition generalizes to g-tuples of POVMs $A^{(1)}, \ldots, A^{(g)}$, having respectively $k_{1}, \ldots k_{g}$ outcomes, where the joint POVM C has outcome set $\left[k_{1}\right] \times \cdots \times\left[k_{g}\right]$.

- Other way to say that: jointly measurable.

What does it mean?

- Compatible measurements can be simulated by a single joint measurement, by classically post-processing its outputs $A_{i}^{(j)}=\sum_{\lambda} p_{j}(i \mid \lambda) C_{\lambda}$.
- Examples:

1. Trivial POVMs $A=\left(p_{i} I_{d}\right)$ and $B=\left(q_{j} l_{d}\right)$ are compatible.
2. Commuting POVMs $\left[A_{i}, B_{j}\right]=0$ are compatible.
3. If the POVM A is projective, then A and B are compatible if and only if they commute.

Noisy POVMs

- POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs.
- Example: dichotomic POVMs and white noise, $s \in[0,1]$:

$$
(E, I-E) \mapsto s(E, I-E)+(1-s)\left(\frac{l}{2}, \frac{l}{2}\right) \quad \text { or } \quad E \mapsto s E+(1-s) \frac{l}{2}
$$

- Taking $s=1 / 2$ suffices to render any pair of dichotomic POVMs compatible define $C_{i j}:=\left(E_{i}+F_{j}\right) / 4$.
- From now on, we focus on dichotomic (YES/NO) POVMs.

Definition

The compatibility region for g measurements on \mathbb{C}^{d} is the set

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C})\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

Compatibility region

$$
\begin{aligned}
\Gamma(g, d):= & \left\{s \in[0,1]^{g}: \text { for all quantum effects } E_{1}, \ldots, E_{g} \in \mathcal{M}_{d}(\mathbb{C})\right. \\
& \text { the noisy versions } \left.s_{i} E_{i}+\left(1-s_{i}\right) I_{d} / 2 \text { are compatible }\right\}
\end{aligned}
$$

- The set $\Gamma(g, d)$ is convex.
- For all $i \in[g], e_{i} \in \Gamma(g, d)$: every measurement is compatible with $g-1$ trivial measurements.
- For $d \geq 2,(1,1, \ldots, 1) \notin \Gamma(g, d)$: there exist incompatible measurements.
- For all $d \geq 2, \Gamma(2, d)$ is a quarter-circle.

Generally speaking, the set $\Gamma(g, d)$ tells us how robust (to noise) is the incompatibility of g dichotomic measurements on \mathbb{C}^{d}.

Link measurement compatibility and matrix convex sets

Measurement compatibilty revisited

From now on, we concentrate on measurements with two outcomes and identify $E^{(i)}=\left\{E_{i}, I-E_{i}\right\}$ with E_{i}.

Theorem

Let

$$
A=\sum_{j=1}^{g} e_{j} \otimes\left(2 E_{j}-I\right)
$$

Then,

1. $A \in \mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ if and only if $\left\{E_{j}\right\}_{j \in[g]}$ is a collection of POVMs.
2. $A \in \mathcal{W}_{d}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ if and only if $\left\{E_{j}\right\}_{j \in[g]}$ is a collection of compatible POVMs.

Proof sketch

- $\mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ is given in terms of hyperplanes. Have to verify $-I \leq A_{i}=2 E_{i}-I \leq I$ $\Longrightarrow 0 \leq E_{i} \leq 1$.
- Reminder:

$$
\mathcal{W}_{n}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right):=\left\{X=\sum_{j} z_{j} \otimes Q_{j} \in\left(\mathcal{M}_{n}^{\mathrm{sa}}\right)^{g}: z_{j} \in \mathcal{C} \forall j, Q \operatorname{POVM}\right\}
$$

- Going to extreme points:

$$
2 E_{j}-I=\sum_{\epsilon \in\{ \pm 1\}} \epsilon(j) Q_{\epsilon}
$$

- Using $\sum_{\epsilon} Q_{\epsilon}=I$:

$$
E_{j}=\sum_{\epsilon \in\{ \pm 1\}} \delta_{\epsilon(j), 1} Q_{\epsilon}
$$

- $\left\{Q_{\epsilon}\right\}_{\epsilon}$ is a joint POVM.

Inclusion sets and compatibility regions

Theorem

Let $g, d \in \mathbb{N}$. Let $s \in[0,1]^{g}$. Then, $\left\{s_{i} E_{i}+\left(1-s_{i}\right) / / 2\right\}_{i \in[g]}$ is a collection of compatible POVMs for all POVMs $\left\{E_{i}\right\}_{i \in[g]}$, if and only if $s \in \Delta_{\square}(g, d)$. An equivalent way to phrase this is $\Gamma(g, d)=\Delta_{\square}(g, d)$.

- This follows from the computation

$$
A_{i}^{\prime}=2\left(s_{i} E_{i}+\left(1-s_{i}\right) I / 2\right)-I=s_{i}\left(2 E_{i}-I\right)=s_{i} A_{i} .
$$

- So adding noise means scaling the tensor A and hence $s \cdot \mathcal{W}_{d}^{\max }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ is the set of noisy measurements.
- Thus, $s \cdot A \in \mathcal{W}_{d}^{\min }\left(\mathcal{B}\left(\ell_{\infty}^{g}\right)\right)$ means the noisy measurements are compatible.

Polytope compatibility

Work in progress with Ion Nechita and Simon Schmidt

Polytope compatibility

Definition

Let \mathcal{P} be a polytope in \mathbb{R}^{g} such that $0 \in \operatorname{int} \mathcal{P}$. Let

$$
A=\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})^{g} \cong \mathbb{R}^{g} \otimes \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})
$$

a g-tuple of Hermitian matrices. Then, A are \mathcal{P}-operators if and only if $A \in \mathcal{W}_{d}^{\max }(\mathcal{P})$. Moreover, A are \mathcal{P}-compatible if and only if $A \in \mathcal{W}_{d}^{\min }(\mathcal{P})$.

Motivation:

- A are $\mathcal{B}\left(\ell_{\infty}^{g}\right)$-operators if and only if $\frac{1}{2}\left(A_{i}+I\right)$ are dichotomic POVMs.
- A are $\mathcal{B}\left(\ell_{\infty}^{g}\right)$-compatible if and only if $\frac{1}{2}\left(A_{i}+I\right)$ are compatible dichotomic POVMs.

Interlude: General Probabilistic Theories

- A GPT is a triple $\left(V, V^{+}, \mathbb{1}\right)$, where V is a vector space, $V^{+} \subseteq V$ is a cone, and $\mathbb{1}$ is a linear form on $V ; A=V^{*}, A^{+}=\left(V^{+}\right)^{*}$, and $\mathbb{1} \in A^{+}$
- The set of states $K:=V^{+} \cap \mathbb{1}^{-1}(\{1\})$

Equivalent formulation

Theorem

Let $d, g, k \in \mathbb{N}$ and let \mathcal{P} be a polytope with k extremal points $v_{1}, \ldots, v_{k} \in \mathbb{R}^{g}$ such that $0 \in \operatorname{int} \mathcal{P}$. Let $A=\left(A_{1}, \ldots, A_{g}\right) \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})^{g}$ be a g-tuple of Hermitian matrices. Let us consider the map $\mathcal{A}: \mathcal{M}_{d}^{\text {sa }} \rightarrow \mathbb{R}^{g}$,

$$
\mathcal{A}(X)=\left(\operatorname{Tr}\left[A_{1} X\right], \ldots, \operatorname{Tr}\left[A_{g} X\right]\right)
$$

Then,

1. A are \mathcal{P}-operators if and only if \mathcal{A} is a channel between $\left(\mathcal{M}_{d}^{\mathrm{sa}}, \mathrm{PSD}_{d}, \operatorname{Tr}\right)$ and $\left(V(\mathcal{P}), V(\mathcal{P})^{+}, \mathbb{1}_{\mathcal{P}}\right)$.
2. A are \mathcal{P}-compatible if and only if in addition \mathcal{A} factors through the k-simplex Δ_{k}.

Interpretation: \mathcal{P} defines some kind of allowed post-processing. In the case of $\mathcal{B}\left(\ell_{\infty}^{g}\right)$: Classical post-processing.

Magic squares

A magic square is a collection of positive operators $A_{i j}, i, j \in[N]$, such that

A_{11}	+	A_{12}	+	\ldots	+	$A_{1 N}$	$=1$			
+		+				+				
\vdots		\vdots		\ddots		\vdots	\vdots			
+		+				+				
$A_{N 1}$	+	$A_{N 2}$	+	\ldots	+	$A_{N N}$	$=1$			
$\\|$		$\\|$				$\\|$				
1		1		\ldots		1				

The magic square is said to be semiclassical if

$$
A=\sum_{i, j \in[N]}|i\rangle\langle j| \otimes A_{i j}=\sum_{\pi \in \mathcal{S}_{N}} P_{\pi} \otimes Q_{\pi},
$$

where P_{π} is the permutation matrix associated to π and $\left\{Q_{\pi}\right\}_{\pi}$ is a POVM.

Birkhoff polytope compatibility

Definition

For a given $N \geq 2$, the Birkhoff body $\mathcal{B}_{N}(1)$ is defined as the set of $(N-1) \times(N-1)$ truncations of $N \times N$ bistochastic matrices, shifted by J / N :

$$
\mathcal{B}_{N}=\left\{A^{(N-1)}-J_{N-1} / N: A \in \mathcal{M}_{N}(\mathbb{R}) \text { bistochastic }\right\} \subset \mathbb{R}^{(N-1)^{2}}
$$

Theorem

Consider a $(N-1)^{2}$-tuple of selfadjoint matrices $A \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C})^{(N-1)^{2}}$ and the corresponding matrix $\tilde{A} \in \mathcal{M}_{N}\left(\mathcal{M}_{d}(\mathbb{C})\right)$. Then:

1. The matrix \tilde{A} is a magic square if and only if $A-I / N$ are \mathcal{B}_{N}-operators.
2. The matrix \tilde{A} is a semiclassical magic square if and only if $A-I / N$ are \mathcal{B}_{N}-compatible.

Relation to measurement incompatibility

Is being a semiclassical magic square the same as being compatible? No.

$\frac{1}{2}\|0\rangle\langle 0\|$	$\frac{1}{2}\|1\rangle\langle 1\|$	0	$\frac{1}{2} I_{2}$
$\frac{1}{2}\|1\rangle\langle 1\|$	$\frac{1}{2}\|0\rangle\langle 0\|$	$\frac{1}{2} I_{2}$	0
0	$\frac{1}{2} I_{2}$	$\frac{1}{2}\|+\rangle\langle+\|$	$\frac{1}{2}\|-\rangle\langle-\|$
$\frac{1}{2} I_{2}$	0	$\frac{1}{2}\|-\rangle\langle-\|$	$\frac{1}{2}\|+\rangle\langle+\|$

These measurements are compatible, but they do not form a semiclassical magic square.

Reason: \mathcal{B}_{N}-compatibility restricts the post-processing to $p_{i}(j \mid \lambda)=p_{j}(i \mid \lambda)$, i.e., enforces special structure in the joint POVM.

Measurement compatibility with shared effects

Can we generalize the magic square example?

$$
\mathcal{P}=(-1 / 3,-1 / 3,-1 / 3)+\operatorname{conv}\{((1,0,0),(0,0,0),(0,0,1),(0,1,0),(0,1,1)\} .
$$

Consider $(A, B, C) \in\left(\mathcal{M}_{d}(\mathbb{C})^{s a}\right)^{3}$. Then, we have $(A, B, C)+1 / 3(I, I, I) \in \mathcal{W}_{d}^{\max }(\mathcal{P})$ if and only if both $\left(A, B, I_{d}-A-B\right)$ and $\left(A, C, I_{d}-A-C\right)$ are POVMs.

Measurement compatibility with shared effects, continued

When does $(A, B, C)+1 / 3(I, I, I) \in \mathcal{W}_{d}^{\min }(\mathcal{P})$ hold? Equivalent to the existence of a joint measurement such that

Q_{1}	0	0
0	Q_{5}	Q_{4}
0	Q_{3}	Q_{2}
$=A$	$=A$	
$=B$	$=I_{d}-A-B$	

Not all joint measurements are of this form, check

$$
\left(\frac{1}{2} I_{2}, \frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|\right) \quad \text { and } \quad\left(\frac{1}{2} I_{2}, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right) .
$$

Summary

- Measurement incompatibility can be phrased as inclusion of matrix convex sets. Base set: cube.
- Noise robustness corresponds to inclusion constants.
- Generalization: \mathcal{P}-operators and \mathcal{P}-compatible operators.
- Examples include magic squares and compatibility with shared elements (under restricted post-processing).

Can we find more tasks in quantum information theory which can be formulated as \mathcal{P}-compatibility?

